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CHAPTER 1

INTRODUCTION

The importance of zero crossing locations in determining the nature of both
one- and two-dimensional signals has been recognized for some time. Experiments 1

in speech processing have shown that speech with only the zero crossing informa-

tion preserved (hard-clipped speech) retains much of the intelligibility of the origi- ‘
nal speech [1]. Also, a wide variety of papers in image processing and vision stress 1
the importance of the information contained in the edges of objects and one theory ,
of human vision relies primarily on edge detection as the mechanism by which g

humans process visual information [2].

There are also a variety of other types of applications in which the zero cross- 1
ings or threshold crossings are available and it is desired to recover the original sig-

nal. One possible application occurs when an image is clipped or otherwise dis-

R T @ R

torted in such a way as to preserve zero crossing or level crossing informaticn and it

is desired to recover the original signal from this informatioi:. This might happen if

o WL A S v N

an image is recorded on a high-contrast film or any film with an unknown charac- ]
teristic. If it is possible to recover the original signal from its threshold crossings,
then it is possible, at least in principle, to recover the original signal from its dis-

torted version and to determine the type of nonlinearity present. In addition, it is

[IRILI L g ©

not necessary for the nonlinearity to be monotonic; it is only necessary that it

preserve the threshold crozsing information. This could be useful in an application
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. such as medical archiving, where intensity levels of images recorded on film are

[]
o}

likely to become distorted over time, but threshold crossing information could be
o preserved. In some archiving applications it is unlikely that any particular image

may need to be retrieved, but it is important to be able to recover the image if

'y

. necessary even if the process is expensive or time-consuming. Another possible
type of application of results on reconstruction from zero crossing information is in
. a v-riety of design problems such as filter design [3] and antenna design [4]. In
these cases, one couid potentially specify the zero crossing points or null points of

the filter response or antenna pattern and then use these points to derive the

«)

N remainder of the response.
\ One might also consider the possibility of exploiting the information in zero
crossings for signal coding and data compression. However, in representing a two-
dimensional signal with zero crossings or threshold crossings, it is important to
recognize that the amplitude information in the original signal is embedded in the -
% exact location of the zero crossings. Consequently, it is not unreasonable that while
the original signal can be sampled at the Nyquist rate, the zero crossing representa-
tion may require a considerably higher, possibly infinite, sampling rate to ade-
quately preserve the zero crossing locations. Thus the total number of bits or
l bandwidth required in the zero crossing representation might well be higher than -
‘ that required by sampling and quantizing the original signal. For this reason, we

[~ expect results on signal reccastruction from zero crossings to be more useful in

applications where the exact zero crossing points are available. It is possible, how-
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ever, to view the representation of signals with zero crossings as a potential trade-
off between the bandwidth and the dynamic range necessary for transmitting a sig-
nal. If the available bandwidth is sufficient to accurately preserve the zero crossing
locations, then the dynamic range requirements might be greatly reduced if the sig-

nal could be recovered from the zero crossing locations.

The possibility of recovering signals from zero crossings has been considered in
a number of different papers in the field of communicatica theory (see [S] for
references), although the great majority of this work has concentrated on one-
dimensional signals. In this thesis, we study the problem of recovering multidimen-
sional signals from zero crossings. As will be discussed in more detail later, there is
a fundamental difference between one-dimensional zero-crossing prcblems and mul-
tidimensional problems since in one dimension, zero crossings represent a discrete
set of points and in two dimensions or higher, zero crossings are contouis or sur-
faces. Thus it is possible to develop results for the multidimensional problem which
have no direct analog in the one-dimensional case. These results, which shall be
developed in this thesis, appear to be less restrictive and more broadly applicable

than two-dimensional extensions of one-dimensional results previously reported.

We shall begin this thesis by reviewing related research on reconstruction of
signals from zero crossings. In developing our new theoretical results on unique
specification with zero crossings, we shall begin by considering two-dime:.sional
periodic signals since these signals can be represented as polynomials with a Fourier

series expansion, allowing us to apply kncwn properties of the zeros of polynomials.
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These results will be presented in chapter 3, along with the extension to signals of
higher dimensions. Most of the results developed for periodic signals can be gen-
eralized to nonperiodic signals; this generalization will be presented in chapter 4.
In chapter 5, we will use the results of chapters 3 and 4 to develop conditions
under which signals are uniquely specified with zero crossings in the Fourier

domain by applying the duality of the Fourier transform in a straight-forward way.

A problem distinct from that of unique'y specifying signals with zero crossings
is the problem of developing effective techniques for recovering a signal from zero
crossing information once it is known that the signal satisfies the appropriate
uniqueness constraints. Two possible algorithms are presented and evaluated in
chapter 6. We include experimental results illustrating images we have successfully
recovered from zero crossing information. We conclude the thesis with suggestions

for future research including possible applications of our resul's.
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CHAPTER 2

RELATED RESEARCH

A significant amount of research in the field of communication theory has
been devoted to the problem of unique representation of signals with zero cross-
ings, primarily for one-dimensional signals. In this chapter, we review this research
to provide background for the results to be developed later in this thesis. A mcre

detailed review of resulis in this area can be found in reference {5].

A wide variety of papers have dealt with the importance of zero crossings and
the possibility of recovering a one-dimensional signal from zero crossing information
alone. These results are primarily based upon the theory of entire functions since it
is known that a bandlimited function can be uniquely extended to the complex
plane as an entire function. Most of these results have come from the field of com-
munication theory, where it is often of considerable value to know what type of
information is sufficient to uniquely specify a signal. In addition, the theory of
zeros of entire functions has been used for comparison and analysis of different
types of modulation systems and for studying properties of modulated signals. For
example, Voelcker [6] shows how modulzation processes can be considered to be
methods of manipulating or extracting the zeros of a signal, and that different sys-
tems can be analyzed as to how they effect the zeros of a signal. Additional appli-
cations for this work occur in a vanety of design probiems where one might want to

specify a system responsc or other signal 1n terms of zero crossings and derive the

..................
......
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remainder of the response from these. Systems are often designed and analyzed in

DOSPRN

terms of poles and zeros, which in the case of lumped systems, involves ihe study of

-‘;'-’,.
LI NS a4

zeros of polynomials, and in the case of distributed systems, involves the study of

w zeros of non-polynomial entire functions (an example is given in [7] ).

& Most of the results on the unique specification of one-dimensional signals are

W based upon the fact that a bandlimited function is entire (analytic everywhere) and

is thus uniquely specified by its zeros (real and complex) to within a constant and
:;:_7 an cxponential factor. An arbitrary bandlimited function is uniquely specified by

its (real) zero crossings if all its zeros are guaranteed to be real. Thus, a number of

previous research efforts concentrated on identifying conditions uncer which signals

- have only real zeros and developing methods for modifying a signal so that all of its

zeros become real. One result in this area is that a one-dimensional complex signal

with no energy for negative frequencies is uniquely specified by the zero crossings

of its real part if the complex signal has zeros only in the upper half-plane (5, 8].
(A more general form of this result is given in [9].) One method of modifying sig-

N nals so that all of their zeros become real is to add a sinusoid of sufficient ampli-

tude at a frequency corresponding to the band edge [10]; another is to repeatedly
differentiate the signal [8]. Some modulation schemes have also been shown to

' ' produce signals with only real zeros [6]. 4

Additional work has involved identifying signals which are uniquely specified

Pl
- R 'r‘-"v s

by their (real) zero crossings desyite the fact that they also contain complex zeros.

oot

1

o
4

This is possiblc if the zero crcssing rate is in some sense higher than the i~forma-
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tion rate or bandwidth of a signal. Voelcker [11] has shown that for angle-
modulated systems, knowledge of the zero crossing locations of the modulated sig-
ral is equivalent to knowledge of samples of the signal before modulation; thus if
the original signal is bandlimited, then the zero crossings of the modulated signal
are sufficient to uniquely specify it. Fairly recently, in response to experimental
results presented by Voelcker and Requicha {12], Logan [9] developed a new class
of bandpass signals which are uniquely specified by their zero crossings. Specifi-
cally, Logan showed that a signal with a bandwidth of less than one octave is
uniquely specified by its zero crossings if it has no zeros in common with its Hilbert
transform other than real simple zeros. This means that almost all bandpass signals

of bandwidth less than one octave are uniquely specified by their zero crossings.

It is also possible to interpret results on unique specification of signals with
zero crossings as a type of sampling, where the "samples” consist of the set of points
(times) corresponding to zerc crossings, as opposed to the amplitude of the signal at
particular fixed instants [5]. Using this point of view, "sampling” might consist of
adding a sine wave at the appropriate frequency and recording those instants when
the resulting signal crosses zero, or equivalently, recording those instants where the
original signal crosses a sinusoid. "Interpolation” would then consist of generating a
signal with sine-wave crossings at the specified instants. Sampling and interpolation

systems using this approach have been designed, implemented, and found to pro-

duce good results [13].
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Despite the number of results on the unique specification of signals with zero
crossings, most one-dimcnsional bandlimited signals encountered in practice do not
satisfy the constraints associated with any of the above results and are not uniquely
specified by their zero crossings unless they satisfy some additional constraints
which effc;,ctively guarantee that they contain a sufficient number of zero crossings.

In fact, it has been shown [14] that almost all sample functions of a bandlimited

|
Gaussian random process are not uniquely specified by zero ~rossings.
Although a considerable amount of theoretical work has been devcied to the
problen: of reconstruction of one-dimensional signals from zero crossings, much less °L

work has been devoted to the corresponding two-dimensional problem. Logan’s

result has been extended to two dimensions [2, 15] by requiring a one-dimensional
signal derived from the original two-dimensional signal to satisfy the constraints of

Logan’s theorem. In addition, one-dimensional results on reconstruction from

sine-wave crossings have been extended to two-dimensional problems [16]. How-
ever, as mentioned earlier, the two-dimensional problem is fundamentally different

from the one-dimensional problem since in two dimensions, the “zero crossings” are

ol
actually zero crossing contours and not isolated points as in the one-dimensional
case. It is possible to derive results on the unique specification of multidimensional
signals with zero crossings which are based directly on the prcperties of multidimen- ‘1

sional signals and are not derived from similar resu’ts for on=-dimensional signals.

These results will be presented in this thesis. a3
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CHAPTER 3

UNIQUE SPECIFICATION OF PERIODIC SIGNALS WITH ZERO CROSSINGS

The representation of a :ignal in terms of zero crossings can be thought of as a
form of nonuniform sampling, with each zero crossing representing one sample [5].
Most one-dimensional bandlimited signals are not uniquely determined by zero
crossings since the average rate of zero crossings is not guaranteed to be sufficiently
high [14]. Logan’s condition [9] requires signals to be bandpass with a bandwidth
of less than one octave so that the number of zero crossings (or the rate of zerc
crossings) is in some sense consistent with the amount of information or bandwidth
in the signal. In two dimensions, in contrast to one dimension, the “zero crossings”
(sign changes) of a signal are contours and thus each zero crossing contour
corresponds to an infinite number of samples of the signal. Thus it is reasonable to

suggest that a two-dimensional signal may be specified with zcro crossings under

more geaneral conditions than those required for a one-dimensional signal.

This is in fact true, and in this chapter, we shall present new results on the
unique specification of bandlimited, periodic, two-dimensional signals from zero
crossings. The results are simpler to develop for periodic signals than for arbitrary
signals since we can represent these signals as polynomials in a Fourier series
representation and apply well-known results on polynomials from algebraic

geometry. (The extension to nonperiodic signals will be presented in the next

chapter.) In the first section, we shall first define this representation and present
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the necessary results on polynomials. Following that, we shall develop a number of
different sets of conditions under which a signal is uniquely specified with zero
crossings. These results can be stated in a number cf different forms since it is pos-
sible to uniquely specify a signal with zero crossings under a number of different
sets of constraints. We shall present the primary result in section 2 and then
develop a number of extensions for different types of signals in section 3. In sec-
tion 4, we consider the problem of sampling the zero crossing contours, that is, we
deveiop conditions under which a signal is uniquely specified with a finite set of
discrete points chosen from the zero crossing contours. In section S, we externd

these results to signals of dimension higher than two.

3.1. Background

Consider a real, bandlimited, continuous-time, periodic signal f(x,y) with
periods T, and T, in the x- and y- directions, respectively. We can express f (x,y)

as a pelynomial using the Fourier series representation:

fy) = T TF(npn) Wi Wy )

where

W2=¢

The coefficients F (n,,n,) are the Fourier series coefficients and represent the spec-

trum of f(x,y). Since we are assuming f(x,y) to be bandlimited, the sums in

equation (1) must be finite. The set of points (ny,n5) where F(ny,n,) is not

€)

(1)

¢

L&
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constrained to be zero is referred to as the region of support of the spectrum.
® Since the Fourier coefficients F (ny,n,) are nonzero for positive and negative values
of n, and.nz, strictly speaking, f (x,y) is not a polynomial in the variables W, and
L W, since it contains negative powers of n; and n,. However, since f(x,y) is
bandlimited, F (n,,n,) is nonzerc only over some finite region in the (n,,n,) plane,
and it is easy to modify equation (1) to relate f (x,y) to a pclynomial in W, and
L W,. Assume F(ny,n;) = 0 outside the region —N; < n; =< N,;, —N; =< n, = N,.
Then we can write:

n,=2N, n,=2N,

F FEy) =Wt Wi fay)= S S F(a-Nyny-N) Wi woh (

n=0 »=0

Although in the discussion that follows we shall refer to the representation of

:'.": : e |" ’ -.‘ A & "
! . . . .
4."4 'AJ L » >

P f(x,y) as a Fourier series polynomial, it should be kept in mind that, strictly
speaking, we are referring to the representation of the modulated signai f’ (x,y) in
equation (2) as a polynomual. ...4
h x
Now that we have establi:hed a method of representing a signal as a polyno- _‘4
mial, we will state a well-established resuit on polynomials in two variables which %
o we will later use to develop our results on the unique specification of signals with :-ji
zero crossings. We will state this result here without proof; the detailed proof is -j
available in references [17] and [18], as well as a number of other texts on algebraic

A
b

geometry.
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Theorem 3.1. If p(x,y} and g(x,y) are two-dimensional polyno-
mials of degrees r and s with no common factors, then there are at
most rs distinct pairs (x,y) where:

p(x,y)=20 (3)
and

q(xy) =10
In this theorem, the degree of a polynomial in two variables is defined in
terms of the sum of the degrees in each variable (for each term), that is, the degree
of a two-dimensional polynomiai p(x,y) is equivalent to the degree of the one-
dimensional polynomual p(x, x). The rs distinct pairs (x,y) described in this
theorem consist of rs points anywhere in the complex (x,y)-plane. Essentially,
Theorem 3.1 places an upper bound on the number of points where two two-

dimensional polynomials can both be zero if they do not have a common factor.

A stronger form of Theorem 3.1 is available which guarantees that the zero-
sets of the polynomials intersect in exactly rs points, rather than simply stating an
upper bound. This stronger result, referred to as Bezout’s Theorem in algebraic
geometry, requires including the multiplicity of intersections as well as points which
lie “at infinity” (e.g., two parallel lines arc considered to intersect in one point at
infinity). Bezout’s Theorem can be thought of as a generalization of the Funda-
mental Theorem of Algebra, which guarantees that an n” degree polynomial has
exactly n roots provided multipiicity is included. To see the connection, consider
applying Theorem 3.1 with f (x,y) = y —h(x), where h(x) is an n'*-degree poly-

nomial in x and let g(x,y) = y. The set of points where f (x,y) = 0 is a curve in

the (x,y)-plane, and the set of points where g(x,y) = 0 is the x-axis. The points
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of intersection (where f(x,y) = g(x,y) = 0) correspond to the n zeros of the
polynomial A (x). Theorem 3.1 guarantees that there will be at most rs = n such
points of intersection and Bezout’s Theorem tells us there will in fact be exactly

rs = n points of intersection.

One interesting aspect of this theorem is that the number of points of intersec-
tion is in general greater taan the number of coefficients or degrees of freedom in
the polynomials. For example, a polynomial of degree N in each variable will have
(N +1)? coefficients and one might expect the polynomial to be uniquely specified
to within a scale factor with (N +1)2—1 distinct points where it is zero. However,
this is not the case since these polynomials will have an overall degree of 2N and
two such polynomials will have 4N? points of intersection, so that (N +1)2—1 points

cannot be guaranteed to uniquely specify the polynomial.

3.2. Primary Result

In this section, we will use the representation of signals as polynomials and the
result on intersection of zero-sets of polynomials presented in the preceding section
to establish our primary resuit cn the reconstruction of periodic signals from zero
crossings. A number of extensions to this result will be presented in the following

section.

To see how the results preseated in the preceding section apply to the problem
of unique specification of two-dimensioial signals with zero crossings, consider a

real, bandlimited, periocic signal f (x,y) expressed as a polynomial in the Fourier
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series representation in equation (2). We assume that there are some regions 4
where f(x,y) is positive and some regions where f(x,y) is negative. These
regions are separated from each other by a contour where f (x,y) = 0. If another

signal g(x,y) has the same zero crossing contours as f (x,y), then there are an

)

infinite number of points where both f(x,y) and g(x,y) are zero. We can then

use Theorem 3.1 to show that f (x,y) and g (x,y) must have a common factor. If

furthermore we know that (x,y) and g(x,y) are irreducible when expressed as <
polynomials as in equation (2), then they must be equal to within a scale factor.
Our result can be stated as follows: °
Theorem 3.2. Let f(x,y) and g(x,y) be real, two-dimensional,
doubly-periodic, bandlimited functions with sign f (x,y) = sign g(x,y),
where f(x,y) takes on both positive and negative values. If f(x,y) -

and g(x,y) are nonfactorable when expressed as polvnomials in the
Fourier series representation (2), then f (x,y) = c2(x,y).

L
AR

Proof: We will prove this result by startiny with two signals f(x,y) and
g (x,y) which satisfy the constraints of the theorem and siiowing that they must be

equal to within a scale factor. Sincc we know that f (x,y) takes on positive and

€

negative values, ther: must be some region of the (x,y) plane where f(x,y) > 0
and ancther region where f(x,y) < 0. Since f (x,y) is bandlimited and therefore
continuous, the boundary between these regions is a contour where f(x,y) = 0. -

Since sign f(x.v) = - u g(x.v) for all (x,y), the same arguments also hold for

8(x,y). Thus, we hav: contours in the x,y plane where:

()
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fxy)=g(xy)=0 @)
Also, if N and N, are defined as in equation (2), we have: '
Wi W, f(xy) =0 (5)

wiiw, g (xy) =0

over these contours. Thus we have an infinite set of points where two polynomials
in the variables W,,W, are known to be zero. Thus, by Theorem 3.1, f (x,y) and
g(x,y) must have a common factor. If furthermore, we assume that f (x,y) and

2(x,y) are nonfactorabie when expressed as poiynomials in equation (2), then

f(x,y) =cg(x,y).

Note that in order to satisfy Theorem 3.1, it is not necessary to know the loca-
tion of all the zero crossing contours; it is only necessary to know the location of a
sufficient number of points along these contours. Thus any zero contour in the
(x,y) plane is sufficient to uniquely specify the signal (since it contains an infinite
number of points) even if the region where f(x,y) < 0 is very small. It is also
possible to sample the zero crossing contours, i.e., to uniquely specify the signal
with only a finite set of discrete points from the zero crossing contours. This possi-

bility will be explored in more detail in section 3.4.

The fact that knowledge of all the zero contours in the (x,y) plane is not
necessary to uniquely specify the signal allows us to extend this result to signals
which are not periodic but are finite length. This extension is impor:ant since most

signals encountered in practice 2r2 finite length. Consider the case where f (x,y)
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is a finite segmer.t of a peniodic signal satisfying the constraints of Theorem 3.2.

For example, if f (x,y) represents one period of a bandlimited periodic function
fxy):

fxy)=33flx +mTyy + nl) (6)

nn

then it is possible to recover f (x,y) from its zero crossings provided that f (x,y)
satisfies the constraints of Theorem 3.2, even though f (x,y) itself is not bandlim-
ited. More generally, it is not necessary for the duration of f (x,y) to be equal to
one period of the corresponding periodic function. Thus, f(x,y) can represent a
finite segment of a variety of different periodic functions. In order for f (x,y) to
tz uniquely specified by its zero crossings, we only need one periodic functicn con-
taining f (x,y) to be bandlimited. Specifically, let us state:

Theorem 3.3. Let f(x,y) and g(x,y) be two-dimensional con-
tinuous functions defined over the same known region R of finite
extent with sign f(x,y) = sign g(x,y), where f(x,y) takes on both
positive and negative values. If f(x,y) = f,(x,y) in R and
g(x,y) = g,(x,y) in R for any periodic, bandlimited functions f,(x,y)

and g,(x,y) which are nonfactorable when expressed as polynomials in
the form (2), then f (x,y) = cg(x,y) for some positive constant c.

Proof: First we note that if f,(x,y) and g,(x,y) are not simply periodic repli-
cations of f (x,y) and g(x,y), then f,(x,y) and g,(x,y) may contain zero cross-
ings that cannot be obtained from the zero crossings of f (x,y) and g(x,y). Thus,
Theorem 3.3 does not quite follow directly from Theorem 3.2. However, unique
specification in terms of zero crossings does not require knowledge of all the zero

crossing contours; it requires only a specific number of points from these contours.

.........................
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In this case, as long as f (x,y) contains both positive and negative values, it will
contain at least one zero crossing contour with an infinite number of points. Thus
fp(x.y) =' 8, (x,y) = 0 at an infinite number of points, and using arguments taken
from the proof of Theorem 3.2, f,(x,y) = cgp(x,y). Since f(x,y) and g(x,y)
are both known to be defined over the same region R and over R,

f(x,y) = fp(x,y) and g(x,y) = g,(x,y), then f(x,y) = cg(x.y).

Having established a set of conditions which guarantee that a signal is uniquely
specified by some partial information, it is worthwhile to determine whether or not
these conditions are likely to apply to a typical signal encountered in practice. First
of all, we note that the irreducibility constraint is satisfied with probability one,
since it has been shown that the set of reducible m -dimensional polynomials forms
a set of measure zero in the set of all m-dimensional polynomials (for m >1) [19]
and that this set is an algebraic set {20]. Furthermore, we shall develop an exten-
sion to Theorem 3.2 in the next secticn which does not require the signals to be
irreducible as Fourier series polynomials. The more restrictive constraint is that of
requiring the signal to strictly bandlimited. Although signals 2ncountered in prac-
tice are generally not strictly bandlimited, in many applications signals are com-
monly assumed to be bandlimited, and furthermore it is common to low-pass filter
signals when necessary for particular processing techniques. Another conceivable

difficulty with this result is that in some applications such as image processing, the

signals are constrained to be positive 2:d thus will not contain zero crossings. Tlis
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problem will be eliminated in the following section when we extend this result to

include crossings of an arbitrary threshold instead of just zero crossings. 3
3.3. Extensions
Although Theorem 3.” states a particular set of constraints under which a sig- 9
nal is uniquely specified with zero crossings, a number of different sets of con-
straints are possible. In this section, we shall introduce four extensions to Theorem P
3.2. The first extension imposes most of its constraints on only one signal, as
opposed to imposing a number of constraints on both signals f (x,y) and g(x,y).
This result will be convenient to use when discussing algorithms for reconstruction 3
from the zero crossings of f(x,y). The second result generalizes the concept of
zero crossings to include crossings of an arbitrary threshold. The third resuit a
extends Theorem 3.2 to include factorable signals by replacing the nonfactorability
constraint with a constraint on each factor. The final result extends Theorem 3.2
to complex signals with spectral components constrained to one half-plane in the #
frequency domain. In this case, the signals are unignely specified with the zero
crossings of the real part of the signal. #
Let us start by considering a case where it would be convenient to have a
result which imposes most of its constraints on only one signal. Suppose a signal 1
f(x,y) is kncwn to satisfy the constraints of Theorem 3.2, and we would like to
develop an algorithm to recover f (x,y) from its zero crossings. It would be con-
a

venient to have a set of constraints which guarantee that there are no other signals

g ‘x,y) with sign f(x,y) = sign g(x,y) whether or not g(x,y) satisfies the
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constraints of Theorem 3.2. While it is simple enough to guarantee that a
° recovered signal g(x,y) is bandlimited, it is extremely difficult to guarantee that
g(x,y) is nonfactorable. Without this restriction, g (x,y) might contain a positive
° factor, and thus we could have sign f (x,y) = sign g(x,y) but f(x,y) # cg(x,y).
To avoid this problem, we note that since multiplication by an additional factor in
the spatial domain increases the degree ~f the Fourier series polynomial, the signai
® g(x,y) would then have a larger bandwidth than f (x,y). Thus, if the exact size
of the bandwidth of f (x,y) is known, then this information, togzther with the zero
° crossings of f (x,y), is < "Icient to uniquely specify f (x,y). Specifically:
Theorem 3.4. Let f{x,y) and g(x,y) be real two-dimensional
signals with F(ny,n;) =0 and G(nyny) = 0 outside the region
, =Ny S nyS Ny, ~N3 S ny S N, with sign £ (3,9) = sign g (x y). If
FNy, N3] # 0, f(x,y) takes on both positive and negative values, and
f(x.,y) is nonfactorable when expressed as a polynomial in equation
(2), then f(x,y) = cg(x,y) for some positive constant c .
)]
Proof: Following the proof of Theorem 3.2, we know that since sign
f(x,y) = sign g(x,y), f(x,y) and g(x,y) must contain a common factor. Since
(¥ f (x,y) is nonfactorable, then if f (x,y) # cg(x,y), g(x,y) = f(x,y) h(x,y) for
some real periodic bandlimited function h(x,y). If A(x,y) is noi a constant, then
H(k,) # 0 for some (k,/) such that either k>0 or />0. Jince F(N{,N;) # 0, we
) iaow that G(N,;+k N,+!) # 0, violating the constraints of the theorem. Thus
h(x,y) must be a constant and g(x,y) = ¢f (x,y).
<
N
i
[ ¢
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Thus, if a signal f(x,y) satisfies the constraints of Theorem 3.4, then we

know that there are no other signals g (x,y ) with the same bandwidth and the same i

zero crossings. Therefore, in a somewhat more general sense than was possible

with Theorem 3.2, we can say that a signal satisfying the constraints of Theorem
3.4 is uniquely specified to within a scale factor with its zero crossings and the

known bandwidth.

It is also possible to generalize Theorems 3.2 and 3.4 to allow unique specifica-
tion with crossings of an arbitrary threshold rather than just zero crossings. The
possibility of developing such an extension provides an important distinction
between our results and earlier results such as Logan’s theorem which cannot be

directly extended to include crossings of an arbitrary threshold. In fact, we can

P |
permit a more generalized form of threshold crossings by allowing crossings of an
arbitrary periodic function. This form of threshold crossings can be considered as a
generalization of sine-wave crossings as used in other work such as [16]. also gen- 2

eralizes previous work with sine-wave crossings mentioned earlier. Using this gen-

eralized form, we can extend Theorem 3.2 as follows:

Theorem 3.5. Let f(x,y), g(x,y), h(x,y) be real, two-
dimensional, doubly-periodic, bandlimited functions  with
sign (f (x,y)—h(x,y)) = sign (g(x.y)-h(x.y)), where
f(x,y)—h(x,y) takes on both positive and negative values. If 4
f(x,y)—h(x,y) and g(x,y)—h(x,y) are nonfactorable when expressed
as polynomials in the Fourier series representation (2), then

fxy)—hix,y) =c(g(x,y)-h(xy)).
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Proof: Since f(x,y), g(x,y), and h(x,y) are periodic and bandlimited, the
® functions f'(x,y) = f(x,y)~h(x,y) and g'(x,y) = g(x.y)-h(x,y) are also
periodic and bandlimited, and according to the theorem statement, will satisfy the
o constraints of Theorem 3.2. Thus f'(x,y) = cg’'(x,y) and
) =hGy) = cle(xy)=hlxy)).
d A further extension to Theorem 3.2 involves replacing the nonfactorability
constraint with a constraint on each factor. Let us express f (x,y) as a product of
® real factors f, (x,y) (factors which are real for real values of x,y). Observe that if
fi(x,y) = 0 for any i, then f(x,y) = O; similarly, if f{x,y) = 0, then at least
one of the factors f,(x,y) must be zero. Thus, if each factor contributes a set of
* zero crossing contours, each factor will be uniquely specified by its own zero cross-
ing contours, and thus we can develop a set of conditions under which f (x,y) will
) be uniquely specified by the complete set of zero crossing contours. Specifically, we
state:
¢ Theorem 3.6. Let f(x,y) and g(x,y) be real. two-dimensional,
doub!y-pcriodic, bandlifnf'tcd fum;tiops with sign f(x,y) = sign 8 (x,y).
factors which are mecacile over the et of eal factos I each of ]
these factors has multiplicity one and takes on both positive and nega- 1
[} tive values, then f (x,y) = cg(x,y) for some positive constant c. 3‘
j
Proof: Recall from the proof of Theorem 3.2 that if f (x,y) and ; (x,y) have '
¢ common zero contours then they must have a common factor. We will assume that
[ ¢
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f(x,y) # cg(x,y) and attempt to reach a contradiction. For convenience, let us

assume that there is some irreducible factor of f(x,y) which is not a factor of (
E: g(x,y). First of all, note that if this factor, denoted f;(x.y), is complex, then
. f:* (x,y) will also be a factor of f (x,y) and thus f (x,y) will contain a real factor )
: f:(x,y) fi*(x,y) which is nonnegative everywhere, violating the constraints of the
theorem. Thus, the factor f;(x,y) must be real, and since according to the
theorem hypothesis, it has both positive and negative values and has multiplicity ¢
one, then we must have sign f (x,y) # sign g(x,y) for some values of (x,y), and
we have reached a contradiction. Thus, there cannot be any facior of f(x,y) )
) which is not a factor of g (x,y) and thus, f (x,y) = cg(x,y).
d
- This theorem could also be stated in a slightly different manner by considering
: ‘ all possible factorizations of f (x,y) and g(x,y) rather than one particular factori-
: . zation. In this case, the requirement would be that every possible factor of f (x,y) [
J and g (x,y) must take on both positive and negative values. The multiplicity con-
straint is then unnecessary since if a factor f,(x,y) occurs with multiplicity two (or
'; higher), then there will also be a factor f(x,y) which is nonnegative for real ‘
-. values of x ,y and violates the constraints of the theorem. |
' Theorem 3.6 can be easily modified to permit finite length signals or to permit ‘
: crossings of an asbitrary threshold. To modify this result for finite length signals,
:::: we simply require that the finite length signals be a finite segmment of a periodic sig- y

nal satisfying the constraints of Theorerz 3.6. To modify this result for crossings of
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an arbitrary threshold a, we simply require that the signals f(x,y)—a and
° g (x,y)—«a satisfy the constraints of Theorem 3.6.

As our final extension, we will modify Theorem 3.2 for complex signals. We

o will assume that the zero crossings of the real parts of the signals are available and

that the signal is constrained so that the real part of the signal is sufficient to

specify the imaginary part. This is possible if the spectrum has a region of support 1
¢ over a nonsymmetric half-plane, i.e., if F {ny,n5] # O, then F[—n;,—n,] = 0 except ,

at n, = ny = 0, where we require F[0,0] to be real. Our result can be stated as
o follows: '

Theorem 3.7. Let f(x,y) and g(x,y) be complex two- )

dimensional, doubly-periodic, bandlimited functions with

® sign Re {f (x,y)} = sign Re {g(x,y)}, where Re {f(x,y)} takes on
both positive and negative values. Assume that F[n;,n,] and G [ny,n,]

have support over the same nonsymmetric half plane {as stated above).

If Re {f(x,y)} and Re {g(x,y)} are nonfactorable when expressed as

polynomials in :he Fourier series representation (2), then k

° fxy) = cg(xy). i

Proof: Since Re {f (x,y)} has  Fourier  series coefficients

PR PO L T

[ ¥] F . + F*|-ny,— -
mendl * P07 hen since f(x.y) is bandlimited, Re {7 (z )} is

s

bandlimited, and similarly for g (x,y). Since Re {f (x,y)} and Re {g(x,y)} satisfy

\

1

i

. the constraints of Theorem 3.2, Re {f(x,y)} = ¢ Re {g(x,y)}. Thus we have i
{

F[nlan] + F.[_nl’—nﬂ G["lv"?_] + G‘[_nl’—"?.] . \'

2 = ¢ ) . Since we know that :;

|

e I

if Flnyn,) # 0, then F{-n,;,—n,] =0 and G[-ny,—n,] = 0, we must have

F[ﬂl,’lz] = CG[nl!"ZI andf(x’y) = Cg('x,y)‘
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wi 3.4. Sampling of Zero Crossing Contours
" As mentioned earlier, it is possible to state Theorem 3.2 in a slightly different
\\ way so that it is possible to uniquely specify a signal with a finite set of discrete
zero crossing points, essentially allowing us to sample the zero crossing contours.
X This result is important since any practical algorithm for recovering signals from
l:\ zero crossing information can only make use of a finite number of zero crossing
. points. In this section, we develop this result and discuss a number of related
‘-.‘-: issues.
“T-V. Before proceeding, let us first emphasize that we are referring to sampling the
,, zero crossing locations along a zero crossing contour and we are not referring to
sampling of the sign of the original signal, that is, recording the sign of the signal at
each point con a predetermined grid. Tkis is distinct from the type of sampling used
J in many signal processing problems where signals are specified with samples over a
}': particular grid. The difficulty with samgling the sign information is that the infor- #
maticn necessary to apply our results to uniquely specify a signal is contained in the
exact location of the zero crossings and this information is lost when (sign f (x,y))
is sampled. From another point of view, we can say that a finite set of samples of 1
(sign f (x,y)) contains a finite number of bits of information and thus cannot be
' expected to uniquely specify a signal to infinite precision. This is distinctly dif- q
ﬁ ferent from typical sampling problems where each sample is of (theoretically) infin-
j ite precision and thus does not contain a finite number of bits of iﬁformation.
! Note, however, that we are strictly referring to theoretical sampling problems; in ﬁ
SN
b
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practical applications, of course, signals are generally represented with a finite j
® number of bits, and it may be possible for a signal to be represented to sufficient "
accuracy with a finite set of samples of (sign f (x,y)). 4
° Since Theorem 3.1 specifies the number of points where two two-dimensional |
polynomials can both be zero, we can use this theorem to establish that a particular
number of arbitrarily-choscn zero crossing points is guaranteed to be sufficient for
. unique specification. We shall also show that this number of points may not be
necessary for unique specification; in particular, if the zero crossing points are not
° chosen arbitrarily but are chosen in some particular way, a smaller set of zero cross-
ing points can be sufficient for unique specification.
The exact number of zero crossing points sufficient fcr unique specification
° depends on the size and shape of the spectrum of the signal. We will state our
results in terms of rectangular spectra since these shapes are common in applications
® and are straight-forward to understand. The result could be easily modiied for
spectra of different shapes or could be applied directly to a .problcm involving a dif-
ferent spectrum by simply assuming a rectangular region large enough to enclose
’ the actual region. If reference to a region of support R (N) spzcifies that the spec-
trum is zero outside the region —N = n;,;n, < N, then we can state:
|
@
o
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- Theorem 3.8. Let f(x,y) and g(x,y) be real, two-dimensional,
: doubly-periodic, bandlimited functions with a spectrum with region of
support R(N). If f(x,y) and g(x,y) are nonfactorable when =)
expressed as polynomials in the Fourier series representation (2), and
f(x,y) = g(x,y) = 0 at more than 16N? distinct points in one period,
then f(x,y) = cg(x,y) for some real constant c.

Proof: Recall that the proof of Theorem 3.2 requires stating that two polyno-
mials W,¥ W.” f(x,y) and W¥ w,¥ g(x,y) are equal to within a scale factor
given that they are both zero at an infinite number of points. (Let N = N; = N,

in the proof of Theorem 3.2.) In the casc of Theorem 3.8, we know that

w¥ W f(x,y) = wi¥ w¥g(x,y) = 0 at more than 16N? points in one period,

=
that is, at more than 16N? distinct values of the variables (W,, W,). These polyno-
mials are of degree 4N and thus, by Theorem 3.1, can have at most 16N? common
zeros. Thus, W¥ WV f(x,y) = cW;¥ w,¥g(x,y) and the theorem follows. >
This result is important since any practical algorithm designed to recover sig- 9
nals from zero crossing information can only make use of a finite number of zero
crossing points. In addition, as discussed in the development of Theorem 3.4, it is 5
necessary to have a result which only requires one signal to be irreducible. We can
now combine both of these ideas into one result which precisely states the condi-
tions we will need to impose later: 4
3
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Theorem 3.9. Let f(x,y) and g(x,y) be real, two-dimensional,
doubly-periodic, bandlimited functions with bandwidth with region of
°® support R(N). If f(x,y) is nonfactorable, when expressed as polyno-
mials in the Fourier series representation (2), F(N,N) # 0, and
f(x,y) =g(x,y) =0 at more than 16N2? distinct points, then
f(x,y) = cg(x,y) for some real constant c.

Proof: The proof is identical to the proof of Theorem 3.8, with the references

to Theorem 3.2 replaced by references to Theorem 3.4.

Another extension one might consider is to permit sampling of zero crossing

contours for factorable signals. However, if a signal is factorable and satisZes the 4
constraints of Theorem 3.6 (but not the constraints of Theorem 3.2), then a finite .:j
set of zero crossings is not guaranteed to uniquely specify the signal since these zero )
crossings may all correspond to the same factor. Howcver, a result similar to
Theorem 3.8 is easily developed for factorable signals by constraining the set of
zero crossings to include N; zero crossings of the i factor, where each N, is chosen
P by applying Theorem 3.8 to each factor individually. It would also be necessary to

know which zero crossings correspond to the same factor in order to successfully

RIE BN TSI |

o

recover a signal under these conditions. These -onstraints would be difficult to ver-

ify in an actual signal reconstruction problem, but would be easier to verify in a

g

situation such as a filter design procedure [3] which involves first specifying the

® zeros of the response and then generating the remainder of the response with signal

RN R NS

reconstruction techniques.

Note that the number of arbitrarily-chosen zero-crossing points sufficient to

1
:
R
..1
d :
uniquely specify a sigral is somewhat greater than the number of unknowns in the -
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signal (i.e., the number of spectra! components). Specifically, if a real signal

etatatsaa

f(x,y) has a spectrum with support over R(N), then by the symmetry properties =
of the Fourier transform, F [nq,n,] has 2N2 + 2N + 1 independent points, which in
general, are complex (except F [0,0]). Since one complex point corresponds to two
real unknowns (the real part and the imaginary part), f(x,y) contains

4AN?2 + 4N + 1 real unknowns or degrees of freedom. According io Theorem 3.8,

'y

f(x.y) is uniquely specified with p zero crossing points if p > 16N2, approxi-

mately four times the number of unknowns.

Although Theorem 3.8 states that a particulzr number of zero crossing points

1

is sufficient for unique specificaticn, it does not state that this number of points is
necessary for unique specification. In particular, as we show next, it is possible to
specify a signal consisting of s spectral components with s —1 zero crossing points if

the zero crossing points are not choscn arbitrarily but are specifically chosen so that

they uniquely specify the signal. To establish this result, note that we can write a

L

set of linear equations of the form:

2nxm; 2mym,
T, ’ T,

S S Fny,nq] el e =0 N -

where each equation uses a different pair of points (x,, y;) on a zero crossing con-
; tour, i.c., for which the equality is known to hold. If we assume that f (x,y) saiis-
fies the constraints of Theorem 3.9, then F[N,N] # 0, so we can substitute

F[N,N] =1 and obtain a non-zero solution. Thus, if F[ny,n,] consists of s

points, these equations contain s —1 (complex) unknown;. Although we have not

..........
........




shown that s —1 equations of this form are guaranteed to have a unique solution,

we know from Theorem 3.9 that if a sufficient number of equations is used (say, p
equations;, where p > 16N?) then these equations are guaranteed to have a unique
solution. If we have p equations in s —1 unknowns and p > s —1, then some of
the equations must be dependent and can be eliminated. Thus, it is possible
(theoretically) to find s — 1 independent equations from the set of p equations, and
thus the corresponding s —1 zero crossing points are sufficient to uniquely specify
f(x,y). This result, however, does not suggest a practical algorithm for choosing

the s — 1 zero crossing points so that these points uniquely specify the signal.

3.5. Higher-Dimensional Signals

Although up to this point we have been primarily concerned with the recon-
struction of two-dimensional signals from zero crossings, it is also possible to
recover signals of dimension higher than two from this information. One approach
to this problem is to take two-dimensicnal slices of the higher-dimensional signal
and recover a two-dimensional signal whose spectrum is a projection of the spec-
trum of the original signal and apply the results developed earlier. This is analo-
gous to one method used by Hayes [21] to develop results on the unique specifica-
tion of two-dimensional signals with Fourier phase information. Another approach,
the one we shall follow here, is to extend the results developed earlier directly to
m -dimensional problems by applying 2n m-dimensional extension of Theorem 3.1.

Such an extension is available, although the result is not quite as straight-forward as

Theorem 3.1. In general, it is not possible to state that two polynomuals in an
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arbitrary number of vancbles have conimon zeros at a finite number of points.
However, it is possible to charzcterize the intersection of two surfaces, each
described by a polynomial equation, as another surface with a specified dimension

and degree.

In the terminology used in algebraic geometry, a variery is defined as the inter-
section of the zero-sets of one or more polynomials, corresponding to our intuitive
notion of surfaces. The dimension of a variety is the number of independent vari-
ables present. In a three-dimensional space, a plane (or a sphere, paraboloid, etc.)
is defined by one equation and thus has two independent variables and dimension
two. A line is defined by two independent equations (the intersection of the zero-
sets of two polynomials) ar:d thus has one independent variable and dimension one.
For a variety defined by one polynomial equation, the degree is equivalent to the
degree of the polynomial defining it. A finite set of points is considered to have
dimension zero, and in this case, the degree is defined as the number of points in

the set.

In order to develop results on the unique specification of higher-dimen<onal
signals with zero crossings, we need to characterize the intersection of varieties of
arbitrary dimension. We begin by stating a result on the dimension of the intersec-

tion as given in [22]:
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Theorem 3.10. Let f (x) be an irreducible polynomial in the vari-
ables x,, x5, ..., x,, and iet V, denote the (m — 1)-dimensional irreduci-
® ble variety {x: f (x) = 0} in the space C™. Let V, denote any variety
of dimension r in C™. If V, is irreducible and V,ZV,, then every
component of the intersection V, MV, has dimension r —1.
®
In fact, it is possible to characterize the intersection of two varieties in more
detail. In particular, under the conditions stated in Theorem 3.10 it is also possible
o to show that V, MV, will have dimension r —1 and degree (deg V)X (deg V,),
provided that when counting the degree of intersections we consider the multipli-
. city of intersections and also include intersections which lie “at infinity”. (In this
case, two parallel planes can be considered to intersect in a line at infinity.) This
stronger result, generally referred to as Bezout’s Theorem in m dimensions, is given
® in [22, 23, 24], but will not be stated precisely here since a precise statement would
require the introduction of a number of addiitional concepts from algebraic
° geometry and Theorem 3.10 is sufficient to develop our results.
Before proceeding further, it is worthwhile to consider a few examples in order
to understand these results on the intersection of varieties. First of all, consider the
¢ case m =2. Curves in a plane have dimension 1 and their intersection has dimer-
sion 0, that is, their intersection is a finite set of points. The number of points in
'Y this set (the degree of the intersection) is equal to the product of the degrees of the
curves, as we found in Theorem 3.1. The case m =3 corresponds to the intersec-
tion of surfaces in three-dimensional space. For example, two ellipsoids each have
¢ dimension 2 and degree 2. Their intersection consists of two ellipses, a one- _
. : i
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dimensional curve of degree 4 which is reducible into two curves of degree 2.

Theorem 3.10 can be applied to the problem of unique specification with zero
crossings .n the same way Thecrem 3.1 was used to develop Theorem 3.2. We will
show that if two signals have the same sign for all (x,y), then their zero crossing
surfaces must intersect in a surfcce of dimension m —1; thus, by Theorem 3.1, the
two surfaces must be identical and the two signals must be equal to within a scale
factor. Specifically, we state the following theorem:

Theorem 3.11. Let f(x) and g(x) be real, m-dimensional,
periodic, bandlimited functions with sign f (x) = sign g(x), where
f (2) takes on both positive and negative values. If f (x) and g(x) are

nonfactorable when expressed as polynomials in the Fourier series
representation (2), then f (x) = cg(x).

Proof: Following the proof of Theorcm 2.2 but extending it to arbitrary
dimensions, from the fact that sign f(x) = sign g(x), we have a set of points
where:

whw o w @ =0 (8)

and

wl lwﬂ: e« o o WMNIg(x)= 0’
that is, a set of points where two polynomials in the variables
W = W, W,, - - - W, are known to be zero. The sets of all points (real and com-
plex) V, = {(¥):f (W) = 0} and V, = {():;g () = O} are (m —1)-dimensional

varieties. By Theorem 3.10, if V, and V, are not identical, then V, MV, must

have dimension m -2. However, we know V, MV, includes surfaces separating
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regions where f (x) > 0 from regions where f(x) < 0. Consider two-dimansional
slices of the signals f (x) and g(x) defined by x; = ay, x5 = a9, ... Xpo3 = Qp_3,
where the a, are chosen so that each successive slice contains positive and negative
values of f (x) and g(x) and thus contains some but not all of the zero crossings of
f(x) and g(x). (If necessary reorder the x, to make this possible.) This two-
dimensional slice contains positive and negative values and thus contains a zero
crossing contour consisting of an infinite number of points. From the point of view

of varieties, taking a slice of a signal corresponds to forming the intersection of the

_21!0.

J
original zeros with series of hyperplanes P,: W, = ¢ L B:. By Theorem

3.10, forming the intersection of V, MV, with each hyperplane reduces the dimen-
sion by one. (In general the intersection may be reducible, but we can apply
Theorem 3.10 to each irreducible component as long as no irreducible component is
completely contained in the next slice.) We thus find that the resulting variety
V.V, NP1NP2" * * (Pm-2 has dimension zero, and thus can only consist of a
finite number of points. Thus, we have reached a contradiction, and V,NV, must

have dimensionm -1, V, = V,, and f (x) = cg(x).

It ic also possible to develop a number of extensions to Theorem 3.11 as we
did for Theorem 3.2. In particuiar, Theorems 3.3, 3.4, 3.5, and 3.6 can be
extended to the m-dimensional casc. These results cllow us to gcncraﬁze Theorem

3.11 to permut finite length signals, constaints or one signal, threshold crossings,
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and factorable signals. Specifically, these results are identical to Theorems 3.3
through 3.6 except that signals of any dimension m = 2 are permitted. These
extensions can be derived by using the proof of the corresponding extension to
Theorem 3.2 and replacing all references to Theorems 3.1 and 3.2 with references

to Theorems 3.10 and 3.11.

A somewhat more difficult problem arises when we attempt to extend
Theorem 3.11 to the case where only a finite set of zero crossing points are avail-
able. While in the two-dimensional case, a result is available which allows us to
state that two curves may intersect in only a finite number of points, our results in
the m-dimensional case inhcrently involve surfaces with an infinite number of
points. Thus it is not possible to say that N zero crossing points are always suffi-
cient to specify an m -dimensional signal for any finite value of N. However, it is
possible to say that when the chosen points are independent in the sense that they
do not lie on an (m —2)-dimensional contour of the appropriate degree, then these

points are sufficient to uriquely specify the signal.
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CHAPTER 4
* UNIQUE SFECIFICATION OF NONPERIODIC SIGNALS
® In this chapter, we extend the results developed earlier for periodic signals to
the case of nonperiodic signals.* This problem is more difficult mathematically since
it is in general not possible to express an arbitrary signal as a polynomial in a
° Fourier series representation. Nevertheless, it is possible to find applicable results
on the intersection of zero sets of functions, this time from the theory of analytic
® scts. We will begin by daveloping the necessary mathematical background and then
present the main result and a number of extensions.
® 4.1. Background
In this section, we define the notation and terminology to be used in the
° remainder of this chapter. In addition, mathematical results to be used later are
presented here.
A two-dimensional complex-valued function (denoted f(s,w)) is said to be
¢ holomorphic if it is holomorphic (or analytic) in each variable separately. A func-
tion holomorphic for all finite values of s and w is called entire. We shall be pri-
. marily concerned with entire functions of exponential type (EFET) (see [5] for a
review of the properties of EFETs in one variable, and (26,27] for EFETs in
several variables). These functions are constrained to have at most an exponential
4
*The work presented in this chapter was performed 10 collaboration with S. Shitz and also ap-
pears in reference [25].
4
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growth rate in any direction in complex space. As is well known [28,29], any
bandlimited function of real variables can be uniquely extended to complex space as |
an EFET. (We will use the notation f (x,y) to denote a furction of real variables
and f(s,w) to denote its extension to complex variables.) This statement applies
for a wide variety of commorn definitions of bandlimited functions. For finite
energy signals, the Fourier transform will exist and any bandlimited signal will have
a Fourier transform with a compact region of support. For bounded signals (with ‘
possibly infinite energy), alternate defimtions of bandlimitation are posSiblc by

using the Fourier-Stieltjes transform or the so-called 2-transform (see (5] for defini-

q
tions and for other possible definitions of bandlimitation). It is also possible to use
a more general definition of bandlimitation derived from the theory of generalized
functions or distributions. This definition requires the spectral distribution as 4

defined in [28] to have compact support. Unless otherwise noted, the results
presented in this chapter apply to this more general type of bandlimitedness,
although in most practical aprlications the usual Fourier or Fourier-Stieltjes defini-
tion will apply.

Entire functions can be characterized in terms of their complex zeros much

like polynomials (see [27] for a precise characterization). For either polynomials or

v

-'4' -'- n‘

entire functions, the represention of a function ‘n terms of zeros requires both the w
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real and complex zeros, not just the real zeros (zero crossings). However, there are
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some important differences between polynomials and entire functions since it is pos-

sible to have entire functions which are not constant yet still have no real or com-
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plex zeros (for example, the function e’ is nonzero for all real or complex values of
s ). Thus if the set of compiex zeros of an entire function is known, then the entire

function may not be known even to within a constant due to the possibility of posi-

tive factors. However, it is known that the only positive EFETSs are exponentials,
and these can be eliminated by placing restrictions on the growth rate of the func-
tion. Such restrictions are often implicit in the definition of a bandlimited func-
tion. For example, if the Fourier transform definition of a bandlimited signal is
used, then the signals are assumed to be finite energy. A more general class of
one-dimensional bandlimited functions is characterized precisely in [5] by develop-
ing a subset of EFETSs referred to as B -functions. The class of B -functions includes
the set of bandlimited signals under a number of common definitions of bandlimita-
tion (e.g., Fourier or Fourier-Stieltjes), as well as including a class of other signals
with similar properties but which do not possess a Fourier (or similar) transform.
B -functions are known to satisfy a number of different growth restrictions on the
real axis which are given in [S] and can be used to climinate the possibility of
exponential factors. For functions of several variables, the Paley-Wiener-Schwartz
theorem [29], which states that a function with a spectral distribution with compact
support has at most polynomial growth in any direction in the real plane (or space),

can be used to eliminate the possibility of exponential factors.

Because of the possibility of nonconstant positive factors in entire functions, it
is common to exclude such factors when considering the factorization of entire

functions into irreducible factors in the same way constants are excluded when con-

..............
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sidering the factorization of polynomials. Specifically, let V, and V, denote the set

!

iy
-
e

of real or complex zeros of f(s,w) and g(s,w), respectively, i.c., 1
Ve, ={(sw): f(s,w) =0}and V, = {(s,w): g(s,w) = 0}. The function f(s,w) |

will then be referred to as irreducible if it cannot be expressed as

f(s.w) =g(s,w)h(s,w) where g(s,w) and h(s,w) are entire functions and V, i
and V, are both nonempty sets. (This definition is also used in [30].) Note that if
h is an entire function which never vanishes (such as e’) then f can still be irredu- J
cible in the se:ise defined abcve although f = g X A.
We shall also use the term analytic set, defined as the intersection of the zero 1
sets of one or more holomorphic functions [26,27]. For example, V, and V, as
definec above are analytic sets, as is V, (\V,. An irreducible analytic set is an ana-
lytic set which cannot be expressed as the union of two distinct analytic sets. For y
example, if f (s,w) is irreducible (as defined above), thea V, is an irreducible ana-
lytic set. If f(s,w) is reducible, it can be expressed as f(s ,w) = g(s,w)h(s,w) ,1
and V; can be expressed as V, = V,JV,. An irreducible analytic set is also
referred to as an analytic surface [26]. )
In this chapter, analytic sets play the same role as the zero sets of polynomials
in the preceeding chapter. Thus, to develop results on reconstruction of signals |
from zero crossings, we will need a result from the theory of intersection of analytic 4
sets:
4
4
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Theorem 4.1. [26] Two surfaces analytic over a closed bounded
region D intersect in at most a finite number of points in D. Two sur-
faces analytic over all of C? coincide if they have in common some
sequence of points along with their limit point.

This theorem is similar to Theorem 3.1 but it only states that the number of
points of intersection in a closed region must be finite; it does not specify the
number of points of intersection. This is because in general EFETSs can be thought
of as "infinitc-order polynomials” and thus will intersect in an infinite number of
points. Nevertheless, it is still possible to constrain the number of points of inter-
section to be finite over any region. This fact allows us to apply the theory of ana-

lytic sets to the problem of unique specification with zero crossings.

4.2. Primary Result

In this section, we will apply the mathematical results stated in the preceeding
section to the problem of unique specification with zero crossings. Theorem 4.1
allows us to develop our result on reconstruction from zero crossings in a straight-
forward way. Note that if two irreducible signals f (x,y) and g (x,y) have identi-
cal zero crossing contours then the sets V, and V, must intersect in curves (at the
zero crossing contours). Since these curves contain an uncountably infinite number
of points in a finitc region, by applying Theorem 4.1 we can show that the sets Vs
and V, must be identical. Then we know that f and g must be equal to within
multiplication by an EFET which never vanishes, that is, by an exponential factor.
This possibility can be eliminated by placing restrictions on the rate of growth of

the function, as mentioned earlier. Specifically, let us state (sece section 4.4 for

.........
..........
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proof):

Theorem 4.2. Let f(x,y) and g(x,y) be real, two-dimensional,
bandlimited signals whose complex extensions are irreducible as entire
functions in the sense defined in the previous section. If f(x,y) takes
on positive and negative values in a closed bounded region D C R? and
signf (x,y) = signg(x,y) for all values of (x,y) in D, then
f(x,y) = cg(x,y) for some real positive constant c.

Note that in this theorem it is not necessary for the zero crossings of f (x,y)
and g(x.y) to be identical for all vaiues of (x,y); it is sufficient for the signals to
have one zero crossing contour in common. This fact allows us to apply this
theorem to signals which are finite length are thus not strictly bandlimitzd. If the
finite length signal reprecents a firite segment of some bandlimited function, then
we can apply Theorem 4.2 by considering the region D to be the region of support
of the function. Specifically, if f(x,y) and g(x,y) are finite length segments of
the bandlimited signals f(x,y) and g(x,y), sign f(x,y) = sign g(x.,y), and
f (x,y) contains sign changes, then f(x,y) = cg(x,y). This is similar to a result
presented in chapter 3 which allows finite length signals to be uniquely specified by
zero crossings if their periodic replications satisfy appropriate constraints. The
result presented here is less restrictive since it does not require the underlying

bandlimited function to be periodic.

While in chapter 3 we argued that the set of reducible polynomials has meas-

ure zero, the same statement does not apply to reducible EFET's. It is possible,
however, to make a number of comments concemning the reducibility of EFET’s.

Although the only one-dimensionai EFET's which are irreducible are of the form

¢
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f(s) = e**?(s —c), this is not the case in two dimensions. Although we cannot

N .l. N

precisely characterize the likelihood that a two-dimensional EFET is irreducible, it
is commdnly assumed that loosely speaking, most two-dimensional EFETs are
irreducible [30, 31,32). However, even if it could be shown that in some statistical
sense “almost all” EFETs are irreducible, there are some important examples of
functions which are reducible. One example occurs if the two-dimensional
bandlimited function can be expressed as a bandlimited function of only one vari-
able, as is the case for circularly symmetnc functions. Another example occurs if
the function is separable and can thus be expressed as 1 product of two bandlimited
functions, one in each vanable. In the next section, we shall extend Theorem 4.2

to include factorable signals.

4.3. Extensions R

Although Theorem 4.2 stated a number of conditions under which a cignal is \
uniquely specified with its zero crossings, it is also possible to develop a number of
variations or extensions of this result. These extensions are similar to those
presented in chapter 3 for the case of periodic signals, but sufficiently different

mathematically so that it is worthwhile to present these results in detail.

We begin by developing a result similar to Theorem 3.4 which allows us to
impose the irreducibility constraint on only one signal. In Theorem 3.4, we

imposed this constraint by requiring the signal to have a non-zero spectral com-

N ./-}.'."'

b

o ponent at the band edge. For the case of nonperiodic signals, we will require that

the signal be bandlimited to a particular region B but no smaller region. =

........................................................................
.............................................
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Specifically, (see section 4.4 for proof):

Theorem 4.3. Let f(x,y) and g(x,y) be real, two-dimensional,
signals and bandlimited to a region B but no smaller region. Let
f (s ,w) be irreducibie in the sense defined in the previous section. If
f(x,y) takes on positive and negative values in a closed bounded
region D C R? and signf (x,y) = signg(x,y) for all values of (x,y) in
D, then f(x,y) = cg(x,y) for scme positive real constant c.

It is also possible to generalize the results presented above to a broader defini-
tion of zero crossings. In particular, it is possible to develop a result similar to
Theorem 4.2 which allows the signals to be specified by crossings of an arbitrary
threshold rather than simply zero crossings. As we found in chapter 3, it is also
possible to allow the threshold to vary across the signal. While for the case of
periodic signals we assumed that the threshold could be described as a periodic
function, the result to be developed here allows the threshold to be specified by an
arbitrary bandlimited function. In particular, let us state (see section 4.4 for
proof):

Theorem 4.4. Let f(x,y), g(x,y), and h(x,y) be real, two-
dimensional, bandlimited signals, where f(s,w)—h(s,») and
8(s,w)—h(s,v) are irreducible in the sense defined in the previous

section. If f(x,y) — h(x,y) takes on positive and ncgative values in a
closed bounded region DCR? and
sign(f (x.y) — h(x,y)] = signlg(x,y) ~ h(x,y)] for all values of
(x,y)in D, then f(x,y)-h(x,y) = c(g(x,y)—h(:,y)) ior some posi-
tive real constant c.

Another extension to Theorem 4.2 which we will develop here is to allow

reducible signals. This extension is important since, as m2ntioned earlier, we can-
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not precisely state the likeihood that a signal is irreducible. The reasoning used to
develop this result is similar to the reasoning used in chapter 3 to develop a similar
result for periodic signals. Let f(s,w) denote the complex extension of a signal
f (x,y) and consider the factorization of f (s,w) into real factors f;(s ,») (factors
which are real for real values of s ,w) which are irreducible over the set of real fac-
tors. We will assume that the number of such factors is finite. Observe that if
fi(s,w) = 0 for any i, then f(s,w) = 0; similarly, if f (s,w) = 0, then at least
one of the factors f,(s,w) must be zero. Thus if each factor contributes a set of
zero crossing contours, each factor will be uniquely specified by its own zero cross-
ing contours, and thus we can develop a set of conditions under which f (x,y) will
b2 uniquely specified by its complete set of zero crossing contours. These conditions
can be stated as follows (see section 4.4 for proof).

Theorem 4.5. Let f(x,y) and g(x,y) be real, two-dimensional,
bandlimited signals. If f (s ,w) and g(s,w) can be factored into a finite
number of real irreducible factors (as described above), and if each fac-
tor of f(s,w) and g(s,w) has multiplicity cne and takes on positive
and negative values in a closed bounded region DC R? and

signf (x,y) = signg(x,y) for all values of (x,y) in D, then
f(x,y) = cg(x,y) for some positive real constant c.

This result allows us to argue that a broad class of bandlimited two-
dimensional signals are uniquely specified with zero crossings without relying on
assumptions of nonfactorability. In particular, it can be shown [25] that almost all
signals in a class of bandlimited Gaussian random fields will contain zero crossings.

Thus, if each factor is chosen in a random way, the resulting signal is quite likely to




satisfy the constraints of Thecrem 4.5.

Althqugh the results we have presented so far are limited to real signals, these
results can be extended to permit signals which are complex but which have a spec-
tral distribution limited to a half-plane. In these cases, it is possible to recover the
real part of the signal from its zero crossings and then recover the imaginary part of
the signal from the real part. This extension is very similar to Theorem 3.7 and is
given in detail in [25].

At this point we should also point out that although the results presented here
apply to periodic signals as well as nonperiodic signals, the results presented in
chapter 3 are not a special case of the results presented here. This is because the
results presented in chapter 3 consider the possible factorization of a signal in terms
of a polynor:ial in e/* and e/ whereas the results presented in this chapter con-
sider the possible factorization cf a signal in terms of an entire function in s and w.
It is possible for a signal to be irreducible as a polynomiza! in ¢/* ,e™ but reducible
as an entire function in s,w, as is the case, for example, with the function

>
)(i+e'2e’?). A similar problem is mentioned

ol

fs.w)=1-elfe™ = (l—ej%ej
by Sanz and Huang [30] when comparing their work on the reconstruction of sig-
nals from magnitude or phase to the work of Hayes [33]. In this case, it was found
tha: the discrete-time problem considered by [33] is not a special case of the
continuous-time problem considered by [30] As is discussed in [30], this problem
can also be viewed in terms of different methods of extending the real signal to

complex variables. In the case of periodic signals, the approach taken in chapter 3

.......................
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and in [33, 34, 35] was effectively to map the periodic signal onto the unit surface in
the complex space, as opposed to mapping the original signal onto the real plane in
complex space as is done in this paper and in [30]. This problem is discussed in

more detail in [30].

4.4. Proofs

In this section, we include the proofs for the resuits developed in this chapter.

Proof of Theorem 4.2.

As was mentioned earlier, if f (x,y) and g(x,y) are real, bandlimited (in the
broad sense) functions, then it is well known [28,29] that these functions can be
extended to C? as entire functions of exponential type (EFET) denoted as f (s ,w)
and g(s,w), which are also EFETs in each variable separately, and have at most
polynomial growth in the real plane. If f(x,y) and g(x,y) are finite energy (in
the real plane), then their Fourier transforms exist and this result is known as the

Polya-Planckerel Theorem [27].

If f(x,y) takes on positive and negative values in th2 closed, bounded region
D, then since f (x,y) is continvous (since it is entire), there must exist a contour
(an uncountable number of points) where f(x,y) = 0. The same is true for
g(x,y). If there exists at least an infinite number of points (x,y)€ D where
f(x,y) =0 and g(x,y) = 0 then there exists a limit point (see [26], proof of
Theorem 4.11, p.72) which is contained in D. The set V, is an analytic set [27,

p-217] and is also an analytic surface [26, p.71] over a (complex) closed, bounded
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domain E:D C EC C? since the analytic set is irreducible by assumption. In any
i bounded and closed set E C C? if two distinct analytic surfaces have a sequence of
;

points in common along with their limit point then by Theorem 4.1, the sets coin-

cide not only in E but in C2so V; = V, in all of C2. Then we can make use of a

thecrem stated precisely by Sanz and Huang [30]:

Theorem 4.6. Let f,g:C"-C be entire functions such that
V, =V,. If g is irreducible, then there exists an entire function
h: C"-C that satisfies f = g xh.

Thus we now have:

)

f(s,w) =h(s,w)g(s,w) 9)

where h (s ,w) is entire and nonzero everywhere in C2. Using growth arguments as
in [30, p.1448] or by applying [36, Theorem 12] to any one-dimensional slice of
f.g,and h,, we can also show that A(s,w) is an EFET. It is well known that the
only EFET which is nonzero in all of C? is e®*“P**Y. Since f(s,w) and g(s,w)
must be real for all real values of s and w, then a,3,y must all be real. We can
also show that a and B must be zero, since otherwise f (s,w) or g(s,w) would
have exponential growth in the real plane, and thus would not be bandlimited [29].

Thus h(s,v) = ¢¥Y=c and f(x,y) = cg(x,y).

Note that in this proof we have only used the fact that there are an infinite
number of points where f(x,y) = 0 aad g(x,y) = 0. Thus it is only necsssary to

know a countably-irinite set of points on a zero crossing contour (e.g., a discrete

sequence of points); it is not necessary to know the comp!cte zero crossing con-
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tours.

Proof of Theorem 4.3.

Proceeding as in the proof of Theorem 4.2, we have:

g(s,w) = f(s,wk(s,w) (10)
where k(s,w) is an EFET in C2. We cannot assume that k(s ,w) is nonzero since
we have not assumed that g (s,w) is irreducible. Instead, we can establish a rela-
tionship between the bandwidths of f,g ,k by applying known properties of the so-
called P-indicators:

Theorem 4.7. [27, Thm. 3.4.4] Let f(z) and k(z) be EFETs

such that for almost all x € RY the function f(x+Aw),A€ R, has

completely regular growth in the variable i € C1. Then the P-indicator

of the function g(z) = f(z)k(z) is the sum of the P-indicators of f {z)
The requirement that f ,g (and therefore k) be strictly bandlimited (and thus any
one-dimensional slice of f or g is bancClimited) guarantees that they have com-
pletely regular growth along any slice [S]. The P-indicator corresponds to the smal-
lest convex domain completely containing the region of support of the spectrum
(see [27] for precise definitions). Roughly speaking, Theorem 4.7 states that the
bandwidth of g is the sum of the bandwidths of f and k. However, in Theorem
4.3, we have constrained g and f to have the same known bandwidth and thus &

must have "zero bandwidth”, i.e., A, (A) = 0 in the notation of {27]. Thus, k must

be constant, and the theorem is proven.

............................................................
.....................................................
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Proof of Theorem 4.4.

The proof is straight-forward due to Theorem 4.2. The functions
fix.y) = f(x,y) — h(x,y) and gy(x,y) = 2(x,y) — h{x,y) satisfy the con-
straints of Theorem 4.2. Note that if the functions f ,g ,h are bandlimited in the

general sense then so are f, and g,.

Proof of Theorem 4.5.

The proof of this theorem is similar to the proof of Theorem 4.2 applied to
each factor separately. Consider the factcrization of f (s,w) and g(s,w) iﬁto a
finite set of real factors, irreducible over the set of real factors, as ¢zscribed earlier.
For each point where f(s,w) = 0 and g(s,w) = 0, at least one of the factors
fi(s,w) must be zero and at least one of the factors g;(s,w) must be zero. For
cach zero contour of f(s,w) and g(s,w) corresponding to the irreducible factors
fi(s,w) and g,(s ,w), we can use Tiicorem 4.2 to show that f,(s,w) = cg;(s,w).
Let us assure that f(x,y) # cg{x,y) and attempt to rezch a contradiction. For
convenience, let us assume that there is some irreducible factor of f (s ,w) which is
not a factor of g(s,w). First of all, note that if this factor, denoted f;(s,w), is
complex, then f,* (s ,w) will also be a factor of f (s,w) and thus f (s ,w) will con-
tain a real factor f,(s ,w)f,* (s ,w) which is nonnegative everywhere, violating the
constraints of the theorem. Thus, the factor f;(s,w) must be real. and since

according to the theorem hypothesis, it has both positive and negative values and

has multiplicity one, then we must have sign f (x,y) # sign g (x,y) for some values
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of (x,y), and we have reached a contradiction. Thus, there cannot be any factor

of f (s ,w) which is not a factor of g (s,w) and thus, f (x,y) = cg(x )




LR in ae o =

.54 .

CHAPTER §

UNIQUE SPECIFICATION WITH FOURIER SIGN INFORMATION

The results developed so far on the unique speFiﬁcaﬁon of signals with zero
crossings can be applied to the problem of unique specification of finite-length
discrete-time sequences with sign information in the Fourier domain. In particular,
since the Fourier transform of a finite length sequence is itself a periodic, bandlim-
ited function, the results from chapter 3 can be applied directly. Similarly, the
results of chapter 4 can be applied to the problem of uniquely specifying finite-
length continuous-time signals with sign information in the Fourier domain. In this
chapter, we will primarily discuss the unique specificaion of discrete-time
sequences, although it should be kept in mind that by using the resuits of chapter

4, similar results can be develeped for continuous-time signals.

A significant amount of research has been devoted to the problem of recover-
ing finite length sequences from various forms of partial information in the Fourier
domain [37], particularly the Fourier magnitude or phase [21,33,38]. In this
chapter, we will begin by reviewing this previous research. We will then state some

notation in section 2, and present our results in this area in saction 3.

5.1. Related Research

Over the past few years, a considerable amount of research has been devoted

to problems related to reconstructing a signal from various forms of partial informa-




tion in the Fourier domain, particularly the Fourier transform magnitude or phase.
This work has involved developing conditions under which a signal is uniquely
specified by its FT magnitude or phase and developing signal reconstruction algo-

rithms.

In a variety of practical applications, only the magnitude or phase of a signal is
available and it is desired either to reconstruct the original signal from this informa-
tion or to synthesize a signal which retains many of the properties or features of the
original signal. Reconstruction from magnitude (or “"phase-retrieval”) problems
occur in areas such as electron microscopy [39], x-ray crystallography [40], and opti-
cal astronomy [41], where the magnitude or inteusity of a diffraction or interfer-
ence pattern is recorded and it is hoped that more complete information can be
recovered. Reconstruction from phase (or “magnitude-retrieval”) problems arise in
cases where the "direction” of a field or signal is available and the magnitude is
degraded in some unknown way; applications of these results have been suggested
in image deblurring [21], arrival time estimation [42], and in the field of
paleomagnetism [37].

In a number of different applications, it has been observed that many of the
features of a signal are preserved when FT phase information is preserved and mag-
nitude information is discardzd but not in the opposite situation [43]. These results
suogest that much of the intelligibility information resides in the phase, and that
perhaps under some conditions, a signal could be reconstructed from the phase

information alone. This is in fact true, and the restrictions are sufficiently mild to
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allow almost all signals in one or more dimensions to be uniquely specified with FT
() phase. Specifically, it has been shown that if a one-dimensional discrete-time signal
is finite léngth and has a z-transform with no zeros on the unit circle or in conju-

gate reciprocal pairs, then phase information alone is sufficient to uniquely specify

the signal to within a scale factor [21,38]. A similar result has been developed for
multidimensional signals which requires that the z-transform have no nontrivial
| ® symmetric factors [21,33]. These results have also been extended to the situation
where the phase is known only at a set of sample frequencies such as when the

phase of the DFT is available.
Unfortunately, a similar set of conditions has not been developed for the prob-
lem of reconstruction from Fourier transform magnitude. One-dimensional signals
R are not in general uniquely specified by FT magnitude since in the z-traisform
domain, zeros can be flipped inside or outside the unit circle without changing the
e magnitude on the unit circle. Cne-dimensional signals are unique'y specified Ly FT
magnitude when all zeros are known to be either inside or outside the unit circle
| (the minimum or maximum phase conditions). In two or more dimensions, how-
. ¢ ever, it has been shown that a finite-length discrete-time signal is uniquely specified
to within a translation, reflection with respect to the origin, and a sign, by samples
XY of Fourier transform magnitude [21,33] when its z-transform is not factorable,

which is satisfied in most cases of practical iuterest. Similar results have been
developed for reconstruction of a complex multidimensional bandlimited signal

frcm either the magnitude or phase of the signal itself [3C]. This i equivalant to
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reconstructing a continuous-time signal from the magnitude or phase of its Fourier

Transform.

The lack of satisfactory results on reconstruction of one-dimensional signals
from FT magnitude prompted researchers to study the problem of unique specifica-
tion with "signed-FT magnitude” (magnitude and one bit of phase). With the addi-
tional sign information, it is usually possible to reconstruct a one-dimensional sig-
nal. In particular, it has been shown that if a signal is real, causal, aqd its z-
transform has no zeros on the unit circle it is uniquely specified by its signed-FT
magnitude {37, 44, 45].

A variety of algorithms have been developed for reconstructing signals from
the FT phase, magnitude, or signed magnitude. One algorithm for recovering a
sequence from FT phase involves solving a set of linear equations. However, this
method is practical only for small signals and applies only to reconstruction from
phase. Another algorithm, used for solving a variety of reconstruction problems, is
an iterative procedure which alternately imposes the finite length constraint in the
time domain and the known Fourier domain information in the frequency domain
[21,33,46]. A number of variations of these algorithms have been developed using
different methods of imposing the constraints and different techniques for

accelerating the convergence rate.

For reconstruction from phase, several forms of the iterative algorithm have

been shown to converge to the correct sequence [47], and to yield good results in

practice. In addition, Musicus [48,49] has shown that by iatroducing two




extrapolation steps at each iteration, this algorithm can be converted to a conjugate

gradient algorithm, guaranteed to converge in a finite number of iterations. The
problem of reconstruction from magnitude appears to be more difficult, since the
iterative algorithm will often generate a sequence which does not contain any
recognizable features of the original image. A number of modifications have been
proposed, with different authors claiming different degrees of success [21, 33, 50].
In general, the quality of the reconstruction depends strongly on the initial estimate
and on the degree of complexity of the image. In fact, if an initial estimate is
chosen which has the correct signed-magnitude, then the algorithm will converge to

the desired result.

From the results discussed above, it is apparent that in many cases, use of
either the phase or the signed-magnitude of the Fourier transform leads to good
results, bui that magnitude alone is not sufficient. This is true in the problem of
direct Fourier synthesis, the development of theoretical results for one-dimensional
signals, and in the development of reconsiruction algorithms for signals of any
dimesnsion. These results suggest that important information about the signal is
contained in the most significant bit of phase, the only information which is con-
tained in both the signed-magnitude and the phase. In fact, it was shown in [37)
thz: images synthesized with the most significant bit of phase (sign of the real part),
unity magnitude, and zero or random numbers for the remainder of phasc were
found to be quite intelligible. As in previous work, this observation suggests that

perhaps under some conditions, it may be possible to recover a signal from the one
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bit of phase information, that is, from sign information in the Fourier domain. By
applying the duality of the Fourier transform, we can use results on reconstruction {
from zero crossings to develop new results on reconstruction from sign information

in the Fourier domain.

§.2. Notation

Before proceeding to develop results on the unique specification with Fourier

{
sign information, let us define cur notation for dealing with sequences. First of all,
we will use x[z] to denote a discrete-time sequence of arbitrary dimension, and we
will use x[n] or x[n,n,] when the discussion is restricted to sequences of one or ‘
two dimensions, respectively. Similarly, we will use X(z) to denote the z-
transform, and X (a) to denote the Fourier transform, i.e.: {

X(z)=Xx[m]z™ (11)

X(w) = X x[a]e/ue ‘

The Fourier transform sign information, or one bit of phase, will be defined as:

1 ifRe{X 0
S:(w) = { -1 oth:,iisiu» = (12) {

[ We will also refer to the even (symmetric) and odd (antisymmetric) components of

Ez a signal, defined as:

» {
O + x[-

s z,la] = X2l txl-al (13)

o

'l. ) u -— x -—n

e zla] = x[a] 2 [~a]

Similarly, X,(z) will denote the z-transform of x,[n]. We will refer to z-transforms

....................................
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........................................
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as symmetric if they correspond to symmetric sequences, that is, X (z) is symmetric
if X(z) = X(z™Y). A factor of X (z) will be said to be a real symmetric factor if it
is symmetric as defined above and if 2ll of its coefficients are real. This does not
imply that X (z) will take or. only real values but does imply that X (z) will be real
on the unit surface |z;| = 1 for all i. Furthermore, the set of real symmetric fac-

tors of a z-transform includes zall possible {actors which satisfy the definition above

and is not limited to irreducible factors.

We shall also refer to two-dimensional signals with a region of support over a
nonsymmetric half-plane (NSHP), defined to mean that if (ny,n4) is in the region
of support, then (—ny,—n,) is not in the region of support unless n; = n, = 0.
Note that if a signal has NSHP support, then it is uniquely specified by its even

component, since by equation (13) we have:

x.[nyny) Ry=ny=0
x(n1m2 = | 2x,[ny,n,] otherwise 14)

for values of (n,,n,) in the specified region of support. Also, note that since
x,[n1,n3] <=> Re {X (w4, wy)}, if x[ny,n;] has NSHP support, then it is uniquely

specified with Re {X (w,, wy)}.

5.3. Results

We will next apply our rcsults on unique specification of signals with zero
crossings to the problem of unique specification of sequences with the Fourier
transform sign information S, (o;,w;). These results can be siated in a number of

diffcrent forms since a number of different results were deveioped for the dual
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o

problem. Since many extensions follow directly from earlier results by duality, we

L

~ will simply present the main result here and extend it for different definitions of
S, (w;,w5). Details of other possible extensions of these results can be found in
[34].

First of all, we note that since the real part of the Fourier transform only con-
tains information about the even component of the sequence, we must require that
x[ny,n,] be even or be defined only over a nonsymmetric half-plane so it can be
a recovered from its even part. Also, as vras the case for the unique specification
with zero crossings, we ncte that if Re {X (wy, @)} > 0 for all (w,w;), then we
- could not expect sign (Re {X (v, ®)}) to be sufficient to reconstruct the original
‘ signal. Thus, we will also assume that Re {X (w;, @5)} and Re {Y (v;,w,)} are posi-

tive in some regions of the (w;,w,) plane and negative in other regions.

Specifically, we state the following theorem:

Theorem 5.1. Let x[ny,n,] and y[nq,n,] be real two-dimensional
sequences with support over a finite non-symmetric haif-plane, with
Sy (wy,09) = §,(wy,07). I Re {X(w;, wy)} takes on both positive and
iy negative values and X,(z,,z,) and Y,(z,,z;) are nonfactorable, then
x[ny,n,] = cy[n,,n,] for some positive constant c.

Proof: Since x[n,,n;] and y[n;,n,] are finite length sequences, x,[n,,n,] and

. y.[n1,m4] are finite length sequences, and Re {X(w;, w,;)} and Re {Y (w,,w,;)} are
- periodic, bandlimited signals. Since X,(zy,25) and ¥,(z1,7,) are nonfactorable,
" Re {X(wy, wy)} and Re {Y(w;,w,;)} are nonfactorable as polynomials. Since
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Re {X (w,, wy)} and Re {Y(w,;,w;)} contain sign changes, we know that they must
satisfy the constraints of Thecrem 3.2, so Re {X (w,, w3)} = cRe {Y(w;,w))},

x.[n1.n2] = oy [n1m3], and x[ny,m2] = cy[ny,ny).

It is also possible to generalize Theorem 5.1 to allow unique specification with
broader classes of sign information than the §, (w;,w,) as defined in equation (12).
Since S, (w,,w;) can be viewed as one bit of Fourier transform phase, we c2n gen-
erzlize S, (w;,ws) to allow quantizing the phase in different ways. Specifically, we

can define:

. 1r u
. 1l ifa 7 = o (0,0 S a + 2 1)
Si(e1,02) = | _1 otherwise
or equivalently,
S (wy,07) = sign (Re {X (01,0) €/7)) (16)

The case a = 0 corresponds to the definition of S, (w,,w,) given in equation (12).

Alternatively, since S, (w;,w;) can be viewed as the zero crossings of the real part of

the Fourier transform, we can generalize S, (w,,w,) to allow crossings of an arbi-
trary threshold as follows as we did in Theorem 3.5:

sP(ow) = sign(Re {X (01, @)}-B) (17)

To develop a result on unique specification with "generalized one bit of

phase”, we will combine these two ideas and define:

SF (wy,09) = sign(Re {X (wy,0)e’%} ~ ) (18)
We can then develop a result similar to Theorem 5.1 for this definition of sign
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information:

Theorem 5.2. Let x[ny,n,] and y[ny,n,] be real two-dimensional
sequences with support over a finite non-symmetric half-plane, with
§2P(wy,w) = S2P(wy,w) for any « and B such that
Re {X (0;,0;)e/®} — B takes on both positive and negatiive values.

Also, let:
, jo 4+ x*[-n,, — =ja
i["b"l] = X[nl n?—] - 2[ o "7] ‘ - B 8[ny,n3 (19)
. y[n1,ns) e/® + y*[—ny, —no) e le
D T — B S[n1,nal
where

1 if (ny,n) = (0,0)
8in,n2] = | 0 otherwise
If X (z5,25) and Y(zy,25) are nonfactorable, then x[ny,n5] = cy[ny,n)]

for (nq,ny) = (0,0), and x[0,0)cosa — B = ¢(y[0,0] cosa — B) for
some positive constant c.

Proof: Since x[ny,n,] and y([ny,n,] are finite length sequences, x[ny,n,] and
y[nq,n4] are finite length sequences, and X (wq,05) and Y (w;,0,) are real, periodic,
bandlimited signals. Since X(z,,25) and Y (z,.z,) are nonfactorable, X (w;,0,) and
¥ (04,w,) are nonfactorable as polynomials. Note that with the definitions given in
the theorem statement,

X (01,0 = Re {X (0,0)e’?} - B (20)
Y (01,05) = Re {Y(w,0)e/%) - B

Then, we note that S2P(w;,w) = S;(w;,wy), and since S2P(w;,0)) = §F(wy,0)),
S; (01,09 = §;(wy,07), and X (w;,w,) contains sign changes. Since X (0,0, and

¥(wy,w;) satisfy the constraints of Theorem 3.2, X (w1,wp) = c¥ (;,0,), and
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i[ny,ny] = cy|ny,ny). Then, with some algebra, x[n;n,] = cy[n;,ny] for
(ny,my) # (0,0), and x[0,0Jcosa — B = c(y[0,0] cosa — B) for some positive

constant c.

The ambiguity at (n,n,) = (0,0) is not just a scale factor; it is a scaling of the

L4.4

2 for some odd integer

value with respect to a threshold -&% Note that if a =

k, then $®P (w;,w,) contains no information about x[0,0], and even if g = O,

x[0,0] cannot be recovered.

The definition of Fourier sign information can also be modified to include
complex values of (w;,w,). In particular, from a z-domain viewpoint, the real
values of (w;,w;) correspond to values of (zy,2;) on the wunit surface
|z;! = |z5] = 1; we might also be interested in sign information on the surface
lz4] = ry, |25] = rp. In this case, if the sequence y[ny,na) = x[ny,ny) ry ry
satisfies the constraints of the results developed -earlier, then it is uniquely specified
with the zero crossings of Re {Y (w,,w,)}, or equivalently, with the zero crossings
of:

Re {Y (21,2} s |21, Jr,1=1 = Re X (7323, 722} |1 =1, |z, 1=1 (21;
Then, since we can recover x[ny,n,] from y[ny,n,], x[n,,n,] is uniquely specified

with sign information over the surface |z,| = ry, |z5] = 7).
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CHAPTER 6
PY RECONSTRUCTION ALGORITHMS ’

Having established that particular classes of signals are uniquely specified by

some partial information, it is of interest to develop algorithms for recovering the

original signal from this information. One common approach to developing algo-

L rithms for reconstruction from various forms of partial information is to develop an

PP TNy T A

iterative algorithm which alterately imposes constraints in the space and frequency

o oa g o

° domains (similar to the Gerchberg-Saxton algorithm [51]). Another approach is to ,
express the solution as a set of simultaneous linear equations. In this section, we
will discuss each of these meti. Is and present experimental resuits obtained with .
@ each method. I
6.1. Iterative Method *
o y
The class of iterative algornithms mentioned above can be applicd to the prob- 1
lem of reconstruction from zero crossings by imposing the correct sign of the signal ;
P (perhaps with respect to some threshold) in iue space domain and the correct i
bandwidth in the Fourier domain. A similar algorithm can be developed for the :
problem of reconstruction from Fourier sign information as discussed in chapter S.
Q

Since knowledge of the exact points of discontinuity is necessary for the signal

to be uniquely specified, the convergence of an iterative algorithm to the correct

< solution necessarily depends upon the use of the exact zero crossing points. Thus,




an algorithm for reconstruction from a sampled version of the sign of f (x,y) can-

4
t)

not be guaranteed to converge to the correct solution. However, it can be shown
. that the continuous-space version of the algorithm (that is, a similar algorithm

imposing the correct sign for all values of (x,y) and thus using an actual Fourier

i)

" transform and not a DFT) will converge to the correct signal. It is also possible to
' show that the sampled version of the algorithm will converge to a signal which satis-
fies both the space and frequency domain constraints (provided such a solution
exists), although the solution is nct unique. These results can be developed within
- the theory of projecticns onto convex sets, as was used in [52] to establish the con-
vergence of a number of different signal reconstruction algorithms. Specifically, the
results developed in [52] apply directly to this problem provided the constraints in
each domain are imposed in such a way as to be projections onto convex ::ts; the

details will be presented in Appendix 1.

Cnce the theoretical properties of a reconstruction algcrithm have been deter- >
mined, it is important to empirically determine the effectiveness of the algorithm in
recovering an actual signal. In particular, it is worthwhile to determine if a practi-
cal sampling rate limits the set of solutions to a sufficiently small set and if conver-
: gence (or a good approximation) can be obtained with a practical number of itera-
9 tions. It is also worthwhile to investigate the effect of using different initial esti- -

mates in ti:e iteraticn.

Experimentally, we have found that different types of signals require different

. -

sampling rates to limit the set of possiblc sciutions to a reasonable size. Specifically,
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signals with most of their energy concentrated in low frequencies inherently contain
fewer zero crossing contours in the Fourier domain and thus each zero crossing
point musf be known to a greater accuracy, requiring the sign function to be signi-
ficantly oversampled. When recovering practical signals from zero crossings, this is
a serious problem since most signals which are bandlimited d.o not have their
energy uniformly distributed throughout tke passband. For these signals, the
energy at frequencies near zero is often severa! orders of magnitude greater than
the energy at frequencies near the band edges. For the dual problem of recovering
sequences from Fourier sign information, there is no reason to believe that
sequences would tend to have most of their energy in a particular region of the
image. In fact, typical images tend to have many more zero crossing contours in
the real part of their Fourier transform than threshold crossing contours (of any
threshold) in the criginal image. Thus the problem of recovering signals from
Fourier sign information tends to be more stable numerically (when typical pictures
are used) and is less susceptible to inaccuracies in zero crossing locations caused by
sampling the sign information.

We have had very little success with the itcrative technique in recovering

images from zero crossings due to the problems mentioned above. When recover-

ing signals from Fourier sign information, we have found that it is necessary to use .

a DFT size at least 4 or 8 times the signal size, and that it is extremely desirable to

start with an initial estimate which in some sense resembles the original signal.

Specifically, we have had some success when using an initial estimate formed from
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the correct one bit of Fourier transform phase and a Fourier transform magnitude
which is the average of a number of unrelated images. This is because images often
have most of their energy at low frequencies and thus the Fourier transform magni-
tudes corresponding to different images are often quite similar. In fact, as was
shown in [37] an image synthesized from the correct one bit of Fourier transform
phase and an average Fourier transform magnitude bears a strong resemblance to
the original image. When the initial estimate has a flat Fourier transform magni-
tude (such as if random noise is used), then the recovered signal appears to be a

noisy version of the original signal.

An example of an image reconstructed with this technique is included in Fig-
ure 1, where we show the original image (a) and the image reconstructed from
Fourier sign information (b). In this ~xample, the original imag= is 64X 64 points,
256256 DFTs were used, and the rasults shown were obtained with 25 iterations,
accelerated with a method similar to that used in [21]. The initial estimate used
here was an average Fourier transform magnitude combined with the correct oue
bit of phase or Fourier sign information. Although a large number of iterations are
required for the algorithm to converge to a sequence satisfying the space and fre-
quency domain constraints, the improvement of image quality after the first 20
iterations or s is somewhat negligible evea if the image at this stage does not

satisfy the frequency domain constraints at every point.
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‘ Figure 1. Reconstruction from Founer Sign Information

b (a) original image

(b) recovered image
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6.2. Linear Equation Method

As mentioned earlier, it is also possible to express the solution to the problem
of reconsiruction from zero crossings as a set of linear equations. Thus, another

possible reconstruction algorithm would involve solving the set of equations:

2nxm,  2myn,

SSFlade @ & 7 =0 (22)

n nz

where each equation uses a different pair of points (x;,y;) for which the equality is
known to hold. This approach has the advantage that the exact zero crossing loca-
tions are used as opposed to sampling the sign information. Since these equations
are written in terms of complex unkrowns we can modify them for real unknowns

and to take advantage of the fact that f (x,y) is real as follows:

> 3 Frlny,ny] cos(2mx,ny+2wy;ny) — Fy{ny,ny) SinCux;ny+2wy,n,) =

1 O23)
where Fg[ny,na] and F;[ny,n,] denote tie real and imaginary parts of F[ny,n,]
respectively.

As mentioned earlier, if we assume that f(x,y) satisfies the constraints of
Theorem 3.9 and the number of equations used (i.c., the number of zero crossing
points used) is alco consistent with the constraints of Theorem 3.9, then iiiese equa-
tions have a unique solution once the scale factor is specified by setting one point
to its knowr. value. We have found it simplest to set Fy[0,0] to the known mean
value of the signal (and F,;[0,0] = 0 since the image is real). W= have also found

that the number of equations specified by Theorem 3.9 is significantly i:igher than

the number of equations usually required in practice. Our experience is that with a
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small number of equations (signals with a narrow bandwicth), it is often possible to
use the same number of equations as unknowns. As the number of unknowns
(spectral components) increases, it is desirable to use morc equations than unk-
nowns and to compute a least squares solution in order to reduce the numerical dif-

ficulties associated with solving linear equations.

Examples of two images recovered with this method are shown in Figures 2
and 3,* which show (a) the original image, (o) an image consisting of the threshold
crossirigs (i.e., contours showing where the original image crosses a particlar thres-
hoid, and (c) the image reconstructed by solving the linear equations and ther: tak-
ing the inverse transform. The original image was obtained from a very similar
image by low-pass filtering the image and removing some low-amplitude Fourier
transform points so that it would be practical to solve a set of linear equations for
the remaining points. The exact size and shape of the spectrum of the resuiting
image (i.e., the region of support of the Fourier transform) was tiien assumed to be
known. Precise values of tiie zero crossing locations were found (to approximately
16 digit accuracy) by expressing the image as a polynomial as in equation (2) and
using a numerical techniquc to find the zeros of this polynomial. The equations
were then solved by using a QR decomposition [54] and double-precizion arith-
metic. In the case of Figure 2, the image contains 228 independent spectral com-
ponents, a total of 600 equations in 454 unknowns were used (here almost all

points are complex and contribute two unknowns), and the normalized rms c:ror

*1 would like to gratc ully acknowiedge the hel» of M. Steinberg in gencrating these figures
and the ones that follow. Additional examples can be found in [53].
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Figure 2. Reconstruction from Zero Crossings

(a) original image (b) threshold crossings of (a)
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Figure 3. Reconstructon of X-Ray
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(rms error/rms signal) is approximately 0.000065. In the case of Figure 3, the
image has 178 independent spectral components, a total of 600 equations in 354 ¢

unknowns were used, and the normalized rms error is approximately 0.027.

The success of this method depends on a number of different factors. The sig-

nificant factors appear to be the accuracy of the zero crossing points and the degree *
to which the zero crossing points are spread out evenly throughout the picture.
The locations of zero crossing points depend on the type of image as well as the 4
threshold used. For example, we note that the reconstruction of the imagé in Fig-
ure 2 was more accurate than that of Figure 3 (despite the fact that the image of &
Figure 3 contains fewer spectral components and the same number of equations
were used) and that Figure 2 contains more contours spread out throughout the
picture. For both of these examples, the threshold chosen was somewhere near the {
mean value of the image. The mean value is not necessarily the best threshold to
use but the best threshold is likely to be fairly close to the mean in most images. $
As the threshold is increased or decreased away from the mean, there will be fewer
picture elements on one side of the threshold than the other, and furthermore
these picture elements will tend to be concentrated in small areas of the picture. ‘
This means that the threshold crossing contours will be less evenly distributed
throughout the picture, and the recorstruction process will be less siable. In partic- {

ular, errors occrring during reconstruction will be greatest in areas which are the
farthest from any zero crossing contour. For most images, there is a range of thres-

holds for which the reccastructicn works well, and outside this range, significant

......................
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errors occur which increase as the threshold varies further from this range.
¢ Examples of reconstruction showing the effects of different thresholds are
shown in Figures 4 and 5. Figure 4 shows a range of different thresholds for the
° “eye” picture shown in Figure 1, and Figure 5 shows a range of different thresholds
for the x-ray picture shown in Figure 2. The images are on a scale of 0 to 1, with
mean values close to 0.5. Figure 4 (a) shows the threshold crossing contours
e obtained with a rather small threshold (.27), such that most of the picture elements
are brighter than this threshold and the threshold crossing contours are concen-
° trated in the center of the picture. Figure 4 (b) shows the image recovered from
these contours. Notice that there are significant errors in the corners of the image,
areas which are far from any threshold crossing contours. Figure 4 (c,d) shows
¢ another example with a slightly larger threshold (.30); in this case the image was
recovered fairly accurately. Figure 4 (e,f) shows a different threshold (.62) some-
® what above than the mean, where the signal was recovered accurately, and Figure 4
(g,h) shows a slightly larger threshold (.64) where again we begin to see distortions
in areas far from the threshold crossing contours. Thus, the reconstruction appears
¢ to be most successful in the rarige of thresholds between .30 (Figure 4(c)) and .62
(Figure 4(e)).
. A similar set of examples is shown in Figure 5 for the x-ray picture. Figure 5
(a,b) illustrates reconstruction using a threshold of .40. The distortions in the
c recovered image appear as a horizontal stripe rather than in a small area as was the
case in the prewvious example. In the Fourier domain, the errors in these images
¢
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Figure 4. Effect of Different Thresholds
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(a) threshold = 0.27 (b) image recovered from (a)

%]

— ~—— =
- [
— / |
N -~y
. -

(c) threshold = 0.30 (d) image recovered from (c)
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Figure 4 (cont’d). Effect of Different Thresholds
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(e) threshold #3 = 0.62 (f) image recovered from (e)

F‘ (g) threshold #4 = 0.64 (h) image recovered from (g)
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Effect of Different Thresholds on X-Ray

(a) threshold = .40

(b) image recovered from (a)

>
(c) threshold = .43 (d) image recovered from (c)
N e . . IR T o' S . N et
. PO AR SRR S S O G Sy S F R A SR AR Ry

BN
O Y

PR

v}

o

o

.y



&

Figure 5 (cont’d). Effect of Different Thresholds on X-Ray

(e) threshold = .52
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(g) threshold = .53
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(f) image recovered from (e)

(h) image recovered from (g)
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show up in the spectral components which have zero horizontal frequency and
fairly iow but nonzero vertical frequency. These component: are under-constrained
by the threshold crossing information since the threshold crossing contours are very
nearly horizontal in this exampic. As seen in Figure 5 (c,d), when the threshold is
increased to .43, the reconstruction is improved. Figure 5 (e,f) shows a reconstruc-
tion obtained with a threshold of 0.52, just slightly above the mean value. While
this example was effectively recovered, when the threshold is increased slightly to
0.53, noticeable errors occur in the reconstruction (Figure S (g,h)). Note that in
this image, the range of thresholds which result in effective signal reconstruction is
much smaller than in the previous example and furthermore, this range is not cen-

tered about the mean value of the image (.49).

The stability of the reconstruction process can be improved by increasing the
number of equations. An example is shown in Figure 6. Figure 6(a) shows the
threshold cressings of the "eye” image used in Figure 1, with a threshold of 0.27.
When 600 equations (454 unknowns) are used, the resulting image has significant
distortion near the comners, which are far from the threshold crossing contours.
When 750 equations are used, the resulting image has improved but the distortion

is still noticeable. When 900 equations are used, the recovered image appears very

similar to the onginal.
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Figure 6. Effect of Additional Equations
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CHAPTER 7

CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH

In this thesis, we have deveioped a number of new theoretical results on the
um'c.lue specification of multidimensional signals with zero crossing or threshold
crossing information. We began by considering the unique specification of two-
dimensional periodic signals since these signals can be represented as a polynomial
using the Fourier series. Our basic result established that a two-dimensional,
periodic, bandlimited signal is uniquely specified to within a scale factor by its zero
crossings if the .signal is nonfactorable when expressed as a polynomial. We
extended this result to include finite-length signals, crossings of an arbitrary thres-
hold, sampling of the zero crossing contours, and factoratiz signals. We also
developed similar results ior signals of higher dimensions and for nonperiodic sig-
nais. We applied these results to the problem of unique specification cf signals with
zero crossings or sign information in the Fourier domain by using the duality of the

Fourier transform in a straight-forward way.

We also discussed two algorithms for reconstruction from zero crossing infor-
mation once it is known that a signal satisfies the uniqueness results. An iterative

algorithm which imposes the known sign information in the space domain and the

known bandwidth in the frequency domain was shown to converge to a signal satis-

fying the given constraints. This method was found not to be successful in practice

because the constraints involved sampling the sign information ard did nct involve
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imposing the exact zero crossing locations. An alternative method, involving the
solution of linear equations where each equation uses one exact zero crossing point, |
was shown to have a unique solution if enough equations are used. This method

was found to give results which are indistinguishable from the original signal pro-

q
vided that the original signal has a limited bandwidth and that the zero crossing
locations are known very accurately.
A wide variety of different directions are possible for expanding or extending ¢
the results of this thesis. First of all, there are a number of therretical issues which
we have not investigated. One problem we have not addressed is the problém of J
determining when it is possible to synthesize an image with an arbitrary set of zero
crossing peints. In the results we have developed, we have always assumed that the
zero crossing points did correspond to an image which we were trying to recover. )
A different problem invoives assuming that the zero crossing points are not known
apriori to ccrrespond to an original image, but it is desired to develop constraints [
on the zero crossing locations such that it is possible to svnthesize an image with |
zero crossings at these points. This problem has been investigated experimentally in
[S5] and has applications in areas such as microlitiiography wiere it is desired to i
create an image which will have the correct zero crossings after passing through
some typs of bandlimited or diffraction-limited system. {
Another problem in the theoretical area is to develop a technique or criterion
for choosing as few zero crossing points as possible to uniquely specify a signal. p

Although we have shcwn that it is possible to uniquely specify an image with a fin-
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ite number of arbitrarily-chosen zero crossing points and furthermore it is possible

® to choose the zero crossing points in such a way that p zero crossing points will
uniquely épecify a signal with p degrees of freedom, a practical criterion for choos-

| ing the p zero crossing points so that this is possible could be beneficial in applica-

tions of this work.

I.C‘h.“‘ .,'.r';'x))"
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A wide variety of experimental or algorithmic work is also possible to extend

‘o
'
-

g this thesis. One obvious possibility is to develop new reconstruction algorithms
which might be more robust or more efficient than the method of solving linear

equations. One possible method is to develop an iterative algorithm which uses the

@
exact zero crossing points as opposed to sampling the sign of the signal, perhaps by
using a conjugate-gradient or other numerical optimization routine [56]. Another
o possibility involves the use of regularization or stabilization techniques used in prob-
lems such as bandlimited extrapolation, which are known to bs ill-conditioned.
e Another direction worth investigating involves using multiplz thresholds or a thres-
hold which varies across the picture. The thresholds can then be chosen in such a
way that there are more zero crossing contours distributed more evenly throughout
¢ the picture, making the reconstruction process more stable. It would alsn be "
worthwhile to analyze the stability of the reconstruction process theocretically both
° with respect to errors in zero crossing locations and with respect to the assumption :
of bandlimitedness. ‘
Ancther area for possible extension of the results in this thesis involves ,’4
. h

developing applicaticns of these results. One possible application occurs in image
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restoration. If an image is recorded with a high-contrast recording medium, then

PRl L e i

the recorded image consists primarily of two distinct levels of intensity, with a
X boundary between these two levels. In this case, it may be possible to determine

the exact threshold crossing points even if it is not possible to determine the ampli-

13 ]

tude of the original signal at most points. By using the results presented in this
thesis, it should be possible to recover the original image before recording provided
that the image satisfies the constraints of any of the results developed earlier. A Ee
number of variations on this problem are possible. For example, if an image is
N over- or under- exposed unintenticnally such that intensity values in a particular
: range are reproduced accurately but values are clipped outside this range, then

again it should be possible to recover an undistorted version of the image.

"

Another method of applying the results developed in this area is to use the

theoretical properties in develcping additional theorztical results in areas such as

- e

communication theory as well as in signal processing. One possibility along these

[

' lines is to use the results to develop new results on multidimensional sampling
theory. Although results on sampling of one-dimensional bardlimited functions are
well established, sampling theorems for two-dimensional functions are generally lim-
ited to sampling on rectangular or other periodic grids. Cne area where it would

be useful to develop new results pertains to sampling on polar grids.

To show how the results on zero crossings apply to sampling, let us define the
phrase "sampling set” to specify a set of points chosen such :hat the samgles of the

X signal at those points arz sufficient to uniquely specify the signal. It can be easily

- o .
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shown [5] that a set of points is a sampling set if and only if there is no signal which
] has zero crossings at these points (and has the required bandwidth). Specifically,
note that if there are two signals f (x,y) and g(x,y) of the same bandwidth with
the same sample values at a particular set of points §, then
h(x,y) = f(x,y)—g(x,y) is zero on the set of poinis in S. Thus if there is no
signal h (x,y) with zero crossings which include all the points in S, the set § will be
® a sampling set. Thus if we have a particular set of points and we want to know if
these poirts form a sampling set, we can attempt to recover a signal which has zero
crossings at all poiats in the set. If such a signal does not exist, we know that the
points form a sampling set. Furthermore, we may be able to create interpolation
functions by recovering signals which are unity at one point in the set and zero at
o the other N —1 points in the sct. It may also be possible to use the results of this
thesis to develop new theoretical results pertaining to other aspects of multidimen-

sional sampling theory or to related fields such as communication theory.

................
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®
Appendix 1. Convergence of Iterative Reconstruction Algorithm
®
In this appendix, we establish the convergence of our algorithm for reconstruc-
tion from zero crossings by using the theory of projection onto convex sets, using
d the approach presented in [S2] for establishing the convergence of a variety of sig-
nal reconstruction algorithms. Specifically, the result we shall be using is as foi-
® lows®:
Theorem Al. Let H be a Hilbert space, G be a composition of
projection operators onto closed convex sets, at least one of which is
® finite-dimensional, and G* denote the intersection of these sets. If G*
is nonempty, then for all x € H, the sequence G"x converges to a point
in G*.
o The results developed in [52] include showing that a wide variety of constraints
often imposed in signal reconstruction algorithms can be imposed in such a way
that the transformations will satisly the constraints of Theorem Al. In fact, the
° constraints used in our algorithm for reccnstruction from zero crossings differ from
some of those discussed in [52] in only trivial ways. The basic approach shall be
¢ repeated here although the mathematical details shall be omitted.
To show that Theorem Al applies to our iterative algorithm, we must first
. carefully define the transformations applied in the time (or space) and frequency i
domains at each iteration so that they can be characterized as projectior: operators 1
onto closed ccavex sets. First let us note that although the continuous-space i
3

*Theorem Al is a weak form of the results in [£2, 57] but it is sufficient for our purpcses.
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variables (x,y) will be used throughout the discussion below, the properties of the
transformations in the space ard frequency domains apply equally well if the sam-
ples (x;,y;) are used. The only difference is that in the continuous-space case, the
set G* will contain exactly one sequence (provided the proper constraints are satis-
fied), whereas in the discrete-space case, the set G* will contain an infinite m;mber

of signals.

Let h(x,y) denote the signal we are trying to recover which is known to
satisfy the constraints of Theorem 3.9 and is thus uniquely specified by
sign h(x,y). Let W* denote the set of sequences which satisfy the frequency

domain constraints:

Fnynyl = 0 for nyorn, é[—NN] (Al)
FIN,N] = H[N,N]

and T* denote the set of sequen~as which satisfy the spatial domain const-zints:

fxy)=0 ifsignh(xy) =1
f(xy)=0 ifsignh(x,y) = - (A2)

Note that the set W* is finite-dimensional even if the space H includcs
infinite-length signals. Also note that the definition of the set 7* may not be pre-
cisely the same as stating sign f (x,y) = sign h(x,y), since at a zero crossing point
where f(x,y) = 0 it is considered to satisfy either constraint sign A(x,y) = 1 or
sign h(x,y) = —1. It is necessary to use the deiinition of T* given in (A2) in

order for T* to be a closed set (a set which includes its limit points.)

Next we will define thc operators T and W to be projecticas onto the sets T*

and W*. For T and W to te projections, we need:

------

.................
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||ITx-x || = ||ly—x]|| forally € T* (A3)

and

||Wx-x|| = |ly—x]|| forally ¢ w* (A4)

Thus the operator W which imposes frequency domain constraints is:

F(nyny) 0=nyn,s N (nyn) # (N,N)
W(F[ny,ni]] = { H(N,N) (ny,n) = (N, N) (AS)
0 ni,nay >N

or in words, simply substituting the known values of H(n,,n,]. The operator T

which imposes spatial domain constraints is:

0y ifs ) = siem h(xy"
T[f(x,y)k[f(%y) Ot:egnm{sixy) sign h(x,y) (A6)

or in words, setting the signal to zero at points where its sign is incorrect.

Next, we express our iterative algorithm in the form

X+ = Gx; (A7)
where G =TW is a composition of projection operatcrs. Then, by Theorem Al,
the sequence in equation (A7) will converge to a point in G*, that is, a sequence
which satisfies the tims and frequency domain constraints. Thus, if h(x,y) satisfies
the constraints of Theorem 3.9, and the iteration imposes the correct sign A(x,)
for all points (continuous-space, not sampled) then G* contains exactly one
sequence, and the iteration must converge to that sequence. If sign h(x,y) is sam-
pl=d, then the iteration must converge to a szquence in G*, i.¢., a sequence which
satisfies the time and frequency domain constraints, although this solution is not

unique and the solution 2ctually obtained depends on the initial cstimate.

.....
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